Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286510173> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4286510173 endingPage "110877" @default.
- W4286510173 startingPage "110877" @default.
- W4286510173 abstract "In this research, the utilization of data-driven approaches to predict the flow pattern of a two-phase flow in a horizontal, inclined, and vertical pipe (−90 to 90°) is investigated. Although multiphase flows have been modeled using artificial neural network models, there is still a long way to draw a road map to optimize these models. To fill this gap, an artificial neural network (ANN) was applied using 8766 experimental samples where 70% of the data was used to train the models, 15% was used for cross-validation, and 15% was used for testing. The generated neural network considers the flow pattern as the output that is predicted using 10 inputs which are flow pressure, liquid surface tension, inclination angle, density, viscosity, and superficial velocity of both gas and liquid streams plus the pipe diameter. Also, superficial liquid and gas Reynold's numbers, mixture Froud number, and Weber number are used to replace the dimensional inputs. It is to be noted that the neural network performance increased when the model is considered a classification problem. The results indicate that using a multi-layer perceptron artificial neural network has high accuracy in predicting the flow regime, demonstrating a high accuracy of 97.3% in predicting the flow pattern. Moreover, the dimensionless-based model's accuracy was demonstrated to be inferior in forecasting the flow regime compared to the dimensional-based model in terms of accuracy. Furthermore, the accuracy of the generated neural network was also validated against Barnea's model which showed an incorrect classification percentage of 1.7%." @default.
- W4286510173 created "2022-07-22" @default.
- W4286510173 creator A5001484630 @default.
- W4286510173 creator A5058144683 @default.
- W4286510173 creator A5064390762 @default.
- W4286510173 creator A5065211444 @default.
- W4286510173 date "2022-10-01" @default.
- W4286510173 modified "2023-10-18" @default.
- W4286510173 title "Road map to develop an artificial neural network to predict two-phase flow regime in inclined pipes" @default.
- W4286510173 cites W1557622049 @default.
- W4286510173 cites W1577493966 @default.
- W4286510173 cites W1963633201 @default.
- W4286510173 cites W1963686226 @default.
- W4286510173 cites W1965915678 @default.
- W4286510173 cites W1968959292 @default.
- W4286510173 cites W1979528517 @default.
- W4286510173 cites W1999653191 @default.
- W4286510173 cites W2010258271 @default.
- W4286510173 cites W2019316073 @default.
- W4286510173 cites W2028750775 @default.
- W4286510173 cites W2031179271 @default.
- W4286510173 cites W2078376347 @default.
- W4286510173 cites W2088780540 @default.
- W4286510173 cites W2090812699 @default.
- W4286510173 cites W2100537585 @default.
- W4286510173 cites W2110447148 @default.
- W4286510173 cites W2263411362 @default.
- W4286510173 cites W2333277326 @default.
- W4286510173 cites W2433756642 @default.
- W4286510173 cites W2472739243 @default.
- W4286510173 cites W2513045195 @default.
- W4286510173 cites W2990750902 @default.
- W4286510173 cites W3049349475 @default.
- W4286510173 doi "https://doi.org/10.1016/j.petrol.2022.110877" @default.
- W4286510173 hasPublicationYear "2022" @default.
- W4286510173 type Work @default.
- W4286510173 citedByCount "0" @default.
- W4286510173 crossrefType "journal-article" @default.
- W4286510173 hasAuthorship W4286510173A5001484630 @default.
- W4286510173 hasAuthorship W4286510173A5058144683 @default.
- W4286510173 hasAuthorship W4286510173A5064390762 @default.
- W4286510173 hasAuthorship W4286510173A5065211444 @default.
- W4286510173 hasConcept C121332964 @default.
- W4286510173 hasConcept C144308804 @default.
- W4286510173 hasConcept C154945302 @default.
- W4286510173 hasConcept C182748727 @default.
- W4286510173 hasConcept C196558001 @default.
- W4286510173 hasConcept C24872484 @default.
- W4286510173 hasConcept C2779379648 @default.
- W4286510173 hasConcept C38349280 @default.
- W4286510173 hasConcept C41008148 @default.
- W4286510173 hasConcept C50644808 @default.
- W4286510173 hasConcept C57879066 @default.
- W4286510173 hasConcept C60908668 @default.
- W4286510173 hasConceptScore W4286510173C121332964 @default.
- W4286510173 hasConceptScore W4286510173C144308804 @default.
- W4286510173 hasConceptScore W4286510173C154945302 @default.
- W4286510173 hasConceptScore W4286510173C182748727 @default.
- W4286510173 hasConceptScore W4286510173C196558001 @default.
- W4286510173 hasConceptScore W4286510173C24872484 @default.
- W4286510173 hasConceptScore W4286510173C2779379648 @default.
- W4286510173 hasConceptScore W4286510173C38349280 @default.
- W4286510173 hasConceptScore W4286510173C41008148 @default.
- W4286510173 hasConceptScore W4286510173C50644808 @default.
- W4286510173 hasConceptScore W4286510173C57879066 @default.
- W4286510173 hasConceptScore W4286510173C60908668 @default.
- W4286510173 hasLocation W42865101731 @default.
- W4286510173 hasOpenAccess W4286510173 @default.
- W4286510173 hasPrimaryLocation W42865101731 @default.
- W4286510173 hasRelatedWork W2038703489 @default.
- W4286510173 hasRelatedWork W2056123622 @default.
- W4286510173 hasRelatedWork W2139372880 @default.
- W4286510173 hasRelatedWork W2163315741 @default.
- W4286510173 hasRelatedWork W2322126542 @default.
- W4286510173 hasRelatedWork W2361951699 @default.
- W4286510173 hasRelatedWork W2376873435 @default.
- W4286510173 hasRelatedWork W2388527651 @default.
- W4286510173 hasRelatedWork W2744202861 @default.
- W4286510173 hasRelatedWork W3033918908 @default.
- W4286510173 hasVolume "217" @default.
- W4286510173 isParatext "false" @default.
- W4286510173 isRetracted "false" @default.
- W4286510173 workType "article" @default.