Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286510732> ?p ?o ?g. }
- W4286510732 endingPage "157526" @default.
- W4286510732 startingPage "157526" @default.
- W4286510732 abstract "The development of nuclear technologies has directed environmental radioactivity research toward continuously improving existing and developing new models for different interpolation, optimization, and classification tasks. Due to their adaptability to new data without knowing the actual modeling function, artificial neural networks (ANNs) are extensively used to resolve the tasks for which the application of traditional statistical methods has not provided an adequate response. This study presents an overview of ANN-based modeling in environmental radioactivity studies, including identifying and quantifying radionuclides, predicting their migration in the environment, mapping their distribution, optimizing measurement methodologies, monitoring processes in nuclear plants, and real-time data analysis. Special attention is paid to highlighting the scope of the different case studies and discussing the techniques used in model development over time. The performances of ANNs are evaluated from the perspective of prediction accuracy, emphasizing the advantages and limitations encountered in their use. The most critical elements in model optimization were identified as network structure, selection of input parameters, the properties of input data set, and applied learning algorithm. The analysis of strategies and methods for improving the performance of ANNs has shown that developing integrated and hybrid artificial intelligent tools could provide a new path in environmental radioactivity modeling toward more reliable outcomes and higher accuracy predictions. The review highlights the potential of neural networks and challenges in their application in environmental radioactivity studies and proposes directions for future research." @default.
- W4286510732 created "2022-07-22" @default.
- W4286510732 creator A5025470304 @default.
- W4286510732 date "2022-11-01" @default.
- W4286510732 modified "2023-10-18" @default.
- W4286510732 title "Artificial neural network modeling in environmental radioactivity studies – A review" @default.
- W4286510732 cites W1151220690 @default.
- W4286510732 cites W1189577169 @default.
- W4286510732 cites W1544461643 @default.
- W4286510732 cites W1963526272 @default.
- W4286510732 cites W1965477140 @default.
- W4286510732 cites W1965603409 @default.
- W4286510732 cites W1968238861 @default.
- W4286510732 cites W1972332181 @default.
- W4286510732 cites W1973657108 @default.
- W4286510732 cites W1973901192 @default.
- W4286510732 cites W1977703648 @default.
- W4286510732 cites W1980932183 @default.
- W4286510732 cites W1985710089 @default.
- W4286510732 cites W1990928167 @default.
- W4286510732 cites W1995341919 @default.
- W4286510732 cites W1996463376 @default.
- W4286510732 cites W1996532728 @default.
- W4286510732 cites W1999730724 @default.
- W4286510732 cites W2003525621 @default.
- W4286510732 cites W2005246048 @default.
- W4286510732 cites W2006544565 @default.
- W4286510732 cites W2006869558 @default.
- W4286510732 cites W2007511740 @default.
- W4286510732 cites W2008273110 @default.
- W4286510732 cites W2008339194 @default.
- W4286510732 cites W2010903887 @default.
- W4286510732 cites W2012358404 @default.
- W4286510732 cites W2013368595 @default.
- W4286510732 cites W2013673432 @default.
- W4286510732 cites W2016657883 @default.
- W4286510732 cites W2020462021 @default.
- W4286510732 cites W2020534770 @default.
- W4286510732 cites W2021304751 @default.
- W4286510732 cites W2023083839 @default.
- W4286510732 cites W2023474156 @default.
- W4286510732 cites W2027631820 @default.
- W4286510732 cites W2033047247 @default.
- W4286510732 cites W2036873747 @default.
- W4286510732 cites W2040870580 @default.
- W4286510732 cites W2043793449 @default.
- W4286510732 cites W2045264482 @default.
- W4286510732 cites W2045850621 @default.
- W4286510732 cites W2046410742 @default.
- W4286510732 cites W2048621860 @default.
- W4286510732 cites W2049060396 @default.
- W4286510732 cites W2050046434 @default.
- W4286510732 cites W2051812123 @default.
- W4286510732 cites W2052309495 @default.
- W4286510732 cites W2054595653 @default.
- W4286510732 cites W2058580716 @default.
- W4286510732 cites W2060862049 @default.
- W4286510732 cites W2060888170 @default.
- W4286510732 cites W2063323168 @default.
- W4286510732 cites W2065741610 @default.
- W4286510732 cites W2066542992 @default.
- W4286510732 cites W2067619114 @default.
- W4286510732 cites W2072867624 @default.
- W4286510732 cites W2075566210 @default.
- W4286510732 cites W2082354460 @default.
- W4286510732 cites W2083902817 @default.
- W4286510732 cites W2084900904 @default.
- W4286510732 cites W2084902636 @default.
- W4286510732 cites W2085766679 @default.
- W4286510732 cites W2086300293 @default.
- W4286510732 cites W2087070363 @default.
- W4286510732 cites W2088580695 @default.
- W4286510732 cites W2089283391 @default.
- W4286510732 cites W2089867178 @default.
- W4286510732 cites W2094233341 @default.
- W4286510732 cites W2096123802 @default.
- W4286510732 cites W2105937355 @default.
- W4286510732 cites W2109383395 @default.
- W4286510732 cites W2112796928 @default.
- W4286510732 cites W2116328173 @default.
- W4286510732 cites W2121013494 @default.
- W4286510732 cites W2137039363 @default.
- W4286510732 cites W2149540873 @default.
- W4286510732 cites W2152016935 @default.
- W4286510732 cites W2194649702 @default.
- W4286510732 cites W2201180398 @default.
- W4286510732 cites W2233705912 @default.
- W4286510732 cites W2502106868 @default.
- W4286510732 cites W2503068257 @default.
- W4286510732 cites W2511711610 @default.
- W4286510732 cites W2599005639 @default.
- W4286510732 cites W2602705758 @default.
- W4286510732 cites W2606960612 @default.
- W4286510732 cites W2754338114 @default.
- W4286510732 cites W2774308036 @default.
- W4286510732 cites W2792053232 @default.
- W4286510732 cites W2802252009 @default.
- W4286510732 cites W2807934512 @default.