Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286511258> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4286511258 endingPage "109409" @default.
- W4286511258 startingPage "109409" @default.
- W4286511258 abstract "Deep neural networks (dnn) techniques for aspect-based sentiment classification have been widely studied. The success of these methods depends largely on training data which are often inadequate because of the rigor involved in manually tagging large collection of opinionated texts. Attempts have been made to transfer knowledge from document-level to aspect-level sentiment task. However, the success of this approach is also dependent on the model because aspect sentiment data like other type of texts contain complex semantic features. In this paper, we present an attention-based deep learning technique which jointly learns on document and aspect-level sentiment data and which also transfers learning from the document-level data to aspect-level sentiment classification. It basically consists of a convolutional layer and a bidirectional long short-term memory (Bilstm) layer. The first variant of our technique uses convolutional neural network (cnn) to extract high-level semantic features. The output of the feature extraction is then fed into the Bilstm layer which captures the contextual feature representation of the texts. The second variant applies the Bilstm layer directly on the input data. In both variants, the output hidden representation is passed to an output layer using softmax activation function for sentiment polarity classification. We evaluate our model on four standard benchmark datasets which shows the effectiveness of our approach with improvements over baselines. We also conduct ablation studies to show the effect of the different document-level weights on the learning techniques." @default.
- W4286511258 created "2022-07-22" @default.
- W4286511258 creator A5041096759 @default.
- W4286511258 date "2022-09-01" @default.
- W4286511258 modified "2023-10-02" @default.
- W4286511258 title "Attention-based aspect sentiment classification using enhanced learning through cnn-Bilstm networks" @default.
- W4286511258 cites W2002456134 @default.
- W4286511258 cites W2064675550 @default.
- W4286511258 cites W2091987367 @default.
- W4286511258 cites W2253519362 @default.
- W4286511258 cites W2898919900 @default.
- W4286511258 cites W2907778281 @default.
- W4286511258 cites W2914820290 @default.
- W4286511258 cites W2964285257 @default.
- W4286511258 cites W2991433488 @default.
- W4286511258 cites W3003681195 @default.
- W4286511258 cites W3005279682 @default.
- W4286511258 cites W3021062812 @default.
- W4286511258 cites W3032634577 @default.
- W4286511258 cites W3123091093 @default.
- W4286511258 cites W3135353212 @default.
- W4286511258 cites W3153368012 @default.
- W4286511258 cites W3160178538 @default.
- W4286511258 cites W3202775307 @default.
- W4286511258 cites W3210828003 @default.
- W4286511258 doi "https://doi.org/10.1016/j.knosys.2022.109409" @default.
- W4286511258 hasPublicationYear "2022" @default.
- W4286511258 type Work @default.
- W4286511258 citedByCount "15" @default.
- W4286511258 countsByYear W42865112582022 @default.
- W4286511258 countsByYear W42865112582023 @default.
- W4286511258 crossrefType "journal-article" @default.
- W4286511258 hasAuthorship W4286511258A5041096759 @default.
- W4286511258 hasConcept C108583219 @default.
- W4286511258 hasConcept C119857082 @default.
- W4286511258 hasConcept C13280743 @default.
- W4286511258 hasConcept C138885662 @default.
- W4286511258 hasConcept C150899416 @default.
- W4286511258 hasConcept C153180895 @default.
- W4286511258 hasConcept C154945302 @default.
- W4286511258 hasConcept C17744445 @default.
- W4286511258 hasConcept C178790620 @default.
- W4286511258 hasConcept C185592680 @default.
- W4286511258 hasConcept C185798385 @default.
- W4286511258 hasConcept C188441871 @default.
- W4286511258 hasConcept C199539241 @default.
- W4286511258 hasConcept C204321447 @default.
- W4286511258 hasConcept C205649164 @default.
- W4286511258 hasConcept C2776359362 @default.
- W4286511258 hasConcept C2776401178 @default.
- W4286511258 hasConcept C2779227376 @default.
- W4286511258 hasConcept C41008148 @default.
- W4286511258 hasConcept C41895202 @default.
- W4286511258 hasConcept C66402592 @default.
- W4286511258 hasConcept C81363708 @default.
- W4286511258 hasConcept C94625758 @default.
- W4286511258 hasConceptScore W4286511258C108583219 @default.
- W4286511258 hasConceptScore W4286511258C119857082 @default.
- W4286511258 hasConceptScore W4286511258C13280743 @default.
- W4286511258 hasConceptScore W4286511258C138885662 @default.
- W4286511258 hasConceptScore W4286511258C150899416 @default.
- W4286511258 hasConceptScore W4286511258C153180895 @default.
- W4286511258 hasConceptScore W4286511258C154945302 @default.
- W4286511258 hasConceptScore W4286511258C17744445 @default.
- W4286511258 hasConceptScore W4286511258C178790620 @default.
- W4286511258 hasConceptScore W4286511258C185592680 @default.
- W4286511258 hasConceptScore W4286511258C185798385 @default.
- W4286511258 hasConceptScore W4286511258C188441871 @default.
- W4286511258 hasConceptScore W4286511258C199539241 @default.
- W4286511258 hasConceptScore W4286511258C204321447 @default.
- W4286511258 hasConceptScore W4286511258C205649164 @default.
- W4286511258 hasConceptScore W4286511258C2776359362 @default.
- W4286511258 hasConceptScore W4286511258C2776401178 @default.
- W4286511258 hasConceptScore W4286511258C2779227376 @default.
- W4286511258 hasConceptScore W4286511258C41008148 @default.
- W4286511258 hasConceptScore W4286511258C41895202 @default.
- W4286511258 hasConceptScore W4286511258C66402592 @default.
- W4286511258 hasConceptScore W4286511258C81363708 @default.
- W4286511258 hasConceptScore W4286511258C94625758 @default.
- W4286511258 hasLocation W42865112581 @default.
- W4286511258 hasOpenAccess W4286511258 @default.
- W4286511258 hasPrimaryLocation W42865112581 @default.
- W4286511258 hasRelatedWork W2738221750 @default.
- W4286511258 hasRelatedWork W2758063741 @default.
- W4286511258 hasRelatedWork W2963958939 @default.
- W4286511258 hasRelatedWork W2977314777 @default.
- W4286511258 hasRelatedWork W3016514588 @default.
- W4286511258 hasRelatedWork W3166467183 @default.
- W4286511258 hasRelatedWork W3173182854 @default.
- W4286511258 hasRelatedWork W3192840557 @default.
- W4286511258 hasRelatedWork W4288084884 @default.
- W4286511258 hasRelatedWork W4366224123 @default.
- W4286511258 hasVolume "252" @default.
- W4286511258 isParatext "false" @default.
- W4286511258 isRetracted "false" @default.
- W4286511258 workType "article" @default.