Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286511713> ?p ?o ?g. }
- W4286511713 endingPage "135789" @default.
- W4286511713 startingPage "135789" @default.
- W4286511713 abstract "Although photocatalysis with ultraviolet-visible (UV-vis) light has made considerable advances, it is limited by the low efficiency of UV-vis energy conversion. To overcome this problem, UV-vis light can be replaced with near-infrared (NIR) light. Herein, we coupled eggshell-derived CaCO3 with a NIR-absorbing CuSe semiconductor and fabricated an insulator-based heterojunction structure. In application case studies of 4-nitrophenol (4-NP) and bacteria, the nanocomposites showed enhanced photocatalysis activity under NIR light induction. A first-principles calculation indicated that photoexcited electrons could transfer from the conduction band of CuSe to the conduction band of CaCO3. The main reactive species generated by the photocatalysis were ·CO3-, and ·OH free radicals. The antibacterial mechanisms of photocatalysis on the cell permeability and DNA layers of the bacterial cells were also revealed. Besides providing novel perspectives and mechanistic understanding of the fabrication of NIR light-driven photocatalysts, this study demonstrates the valorization of eggshell bio-wastes in environmental remediation." @default.
- W4286511713 created "2022-07-22" @default.
- W4286511713 creator A5021636467 @default.
- W4286511713 creator A5034480243 @default.
- W4286511713 creator A5036120803 @default.
- W4286511713 creator A5043167767 @default.
- W4286511713 creator A5051439492 @default.
- W4286511713 creator A5089295119 @default.
- W4286511713 date "2022-11-01" @default.
- W4286511713 modified "2023-10-16" @default.
- W4286511713 title "Designing waste Bioresource-derived value-added Nanohybrids for efficient photocatalysis water treatment" @default.
- W4286511713 cites W1560540731 @default.
- W4286511713 cites W1976193828 @default.
- W4286511713 cites W1978363597 @default.
- W4286511713 cites W2026921346 @default.
- W4286511713 cites W2047818224 @default.
- W4286511713 cites W2053297429 @default.
- W4286511713 cites W2146528580 @default.
- W4286511713 cites W2150710507 @default.
- W4286511713 cites W2265303336 @default.
- W4286511713 cites W2280091859 @default.
- W4286511713 cites W2330465456 @default.
- W4286511713 cites W2337517030 @default.
- W4286511713 cites W2338316183 @default.
- W4286511713 cites W2406144033 @default.
- W4286511713 cites W2518071875 @default.
- W4286511713 cites W2525170431 @default.
- W4286511713 cites W2560676532 @default.
- W4286511713 cites W2581218218 @default.
- W4286511713 cites W2582292537 @default.
- W4286511713 cites W2592700141 @default.
- W4286511713 cites W2594606733 @default.
- W4286511713 cites W2601012931 @default.
- W4286511713 cites W2739808499 @default.
- W4286511713 cites W2779295346 @default.
- W4286511713 cites W2793367407 @default.
- W4286511713 cites W2803107202 @default.
- W4286511713 cites W2883864289 @default.
- W4286511713 cites W2884402212 @default.
- W4286511713 cites W2889416506 @default.
- W4286511713 cites W2893436378 @default.
- W4286511713 cites W2896044205 @default.
- W4286511713 cites W2923182685 @default.
- W4286511713 cites W2928676252 @default.
- W4286511713 cites W2936645319 @default.
- W4286511713 cites W2939470935 @default.
- W4286511713 cites W2946554201 @default.
- W4286511713 cites W2948251855 @default.
- W4286511713 cites W2948678937 @default.
- W4286511713 cites W2954897352 @default.
- W4286511713 cites W2969391086 @default.
- W4286511713 cites W2970648652 @default.
- W4286511713 cites W2977054487 @default.
- W4286511713 cites W3004359532 @default.
- W4286511713 cites W3019610731 @default.
- W4286511713 cites W3028844552 @default.
- W4286511713 cites W3082770210 @default.
- W4286511713 cites W3089285842 @default.
- W4286511713 cites W3108202880 @default.
- W4286511713 cites W3119005876 @default.
- W4286511713 cites W3179632295 @default.
- W4286511713 doi "https://doi.org/10.1016/j.chemosphere.2022.135789" @default.
- W4286511713 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35872059" @default.
- W4286511713 hasPublicationYear "2022" @default.
- W4286511713 type Work @default.
- W4286511713 citedByCount "7" @default.
- W4286511713 countsByYear W42865117132022 @default.
- W4286511713 countsByYear W42865117132023 @default.
- W4286511713 crossrefType "journal-article" @default.
- W4286511713 hasAuthorship W4286511713A5021636467 @default.
- W4286511713 hasAuthorship W4286511713A5034480243 @default.
- W4286511713 hasAuthorship W4286511713A5036120803 @default.
- W4286511713 hasAuthorship W4286511713A5043167767 @default.
- W4286511713 hasAuthorship W4286511713A5051439492 @default.
- W4286511713 hasAuthorship W4286511713A5089295119 @default.
- W4286511713 hasConcept C104663316 @default.
- W4286511713 hasConcept C108225325 @default.
- W4286511713 hasConcept C112570922 @default.
- W4286511713 hasConcept C127413603 @default.
- W4286511713 hasConcept C139066938 @default.
- W4286511713 hasConcept C161790260 @default.
- W4286511713 hasConcept C171250308 @default.
- W4286511713 hasConcept C178790620 @default.
- W4286511713 hasConcept C185592680 @default.
- W4286511713 hasConcept C18903297 @default.
- W4286511713 hasConcept C192562407 @default.
- W4286511713 hasConcept C2776798109 @default.
- W4286511713 hasConcept C42360764 @default.
- W4286511713 hasConcept C49040817 @default.
- W4286511713 hasConcept C522964758 @default.
- W4286511713 hasConcept C65165184 @default.
- W4286511713 hasConcept C75473681 @default.
- W4286511713 hasConcept C79794668 @default.
- W4286511713 hasConcept C86803240 @default.
- W4286511713 hasConcept C92880739 @default.
- W4286511713 hasConceptScore W4286511713C104663316 @default.
- W4286511713 hasConceptScore W4286511713C108225325 @default.
- W4286511713 hasConceptScore W4286511713C112570922 @default.