Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286512461> ?p ?o ?g. }
- W4286512461 endingPage "28" @default.
- W4286512461 startingPage "20" @default.
- W4286512461 abstract "A Doppler ultrasound (DUS) is essential for detecting blood flow abnormalities in the umbilical cord (UC). Any morphological abnormalities of the UC may lead to morbidity and stillbirth. Some abnormalities such as torsion, strictures and true-knot, however, may only be discovered at birth. This study proposes a novel approach of using machine learning analysis of flow velocity waveforms to improve the diagnosis of UC abnormalities.A dynamic in-vitro simulator for DUS and three UC models, each representing a different morphology: true-knot, straight and coiled, were designed. DUS flow field images were captured from four cases of flow through the models: straight, coiled, at mid- and exit of the UC true-knot. The images were transformed into vector profiles of average flow signals that were segmented into 250 flow waves, each comprising 120 samples, for each of the four cases. Three sets of features were extracted from each flow wave and different machine learning algorithms were used for dimensional reduction and binary and multiclass classification.Significant differences were obtained between flow signals measured at the mid-knot compared to all other cases, which were also reflected in the average high accuracy rates of 97.5%-99.2%. Good accuracy rates of ∼80% and up were also generated, allowing the differentiation between the straight, coiled and exit true-knot.Our dynamic simulator can produce an unlimited database, and combined with the proposed machine learning analysis, may be used as decision support system and increase the ability to diagnose unseen pathologies of the UC." @default.
- W4286512461 created "2022-07-22" @default.
- W4286512461 creator A5009243417 @default.
- W4286512461 creator A5033072243 @default.
- W4286512461 creator A5089853337 @default.
- W4286512461 date "2022-09-01" @default.
- W4286512461 modified "2023-10-14" @default.
- W4286512461 title "A novel approach based on machine learning analysis of flow velocity waveforms to identify unseen abnormalities of the umbilical cord" @default.
- W4286512461 cites W1973148969 @default.
- W4286512461 cites W1976307554 @default.
- W4286512461 cites W1981976602 @default.
- W4286512461 cites W1984186688 @default.
- W4286512461 cites W1995508458 @default.
- W4286512461 cites W1997778558 @default.
- W4286512461 cites W2042084346 @default.
- W4286512461 cites W2055568727 @default.
- W4286512461 cites W2069117104 @default.
- W4286512461 cites W2069316810 @default.
- W4286512461 cites W2069596439 @default.
- W4286512461 cites W2069994642 @default.
- W4286512461 cites W2080407721 @default.
- W4286512461 cites W2080998924 @default.
- W4286512461 cites W2082912608 @default.
- W4286512461 cites W2092229226 @default.
- W4286512461 cites W2099402325 @default.
- W4286512461 cites W2100559087 @default.
- W4286512461 cites W2102423385 @default.
- W4286512461 cites W2104051514 @default.
- W4286512461 cites W2114838065 @default.
- W4286512461 cites W2138266742 @default.
- W4286512461 cites W2143798640 @default.
- W4286512461 cites W2157274619 @default.
- W4286512461 cites W2170505850 @default.
- W4286512461 cites W2282885289 @default.
- W4286512461 cites W2294798173 @default.
- W4286512461 cites W2342892104 @default.
- W4286512461 cites W2563058157 @default.
- W4286512461 cites W2761415985 @default.
- W4286512461 cites W2773338892 @default.
- W4286512461 cites W2794775957 @default.
- W4286512461 cites W2883978477 @default.
- W4286512461 cites W2979740388 @default.
- W4286512461 cites W3004691372 @default.
- W4286512461 cites W3013047766 @default.
- W4286512461 cites W3064554225 @default.
- W4286512461 cites W3127520712 @default.
- W4286512461 cites W3202326803 @default.
- W4286512461 cites W4206566905 @default.
- W4286512461 cites W4239510810 @default.
- W4286512461 cites W4244010575 @default.
- W4286512461 doi "https://doi.org/10.1016/j.placenta.2022.07.008" @default.
- W4286512461 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35926305" @default.
- W4286512461 hasPublicationYear "2022" @default.
- W4286512461 type Work @default.
- W4286512461 citedByCount "2" @default.
- W4286512461 countsByYear W42865124612022 @default.
- W4286512461 crossrefType "journal-article" @default.
- W4286512461 hasAuthorship W4286512461A5009243417 @default.
- W4286512461 hasAuthorship W4286512461A5033072243 @default.
- W4286512461 hasAuthorship W4286512461A5089853337 @default.
- W4286512461 hasConcept C105702510 @default.
- W4286512461 hasConcept C12267149 @default.
- W4286512461 hasConcept C124504099 @default.
- W4286512461 hasConcept C126838900 @default.
- W4286512461 hasConcept C127413603 @default.
- W4286512461 hasConcept C143753070 @default.
- W4286512461 hasConcept C153180895 @default.
- W4286512461 hasConcept C154945302 @default.
- W4286512461 hasConcept C197424946 @default.
- W4286512461 hasConcept C20749125 @default.
- W4286512461 hasConcept C2776955114 @default.
- W4286512461 hasConcept C2779863119 @default.
- W4286512461 hasConcept C41008148 @default.
- W4286512461 hasConcept C42360764 @default.
- W4286512461 hasConcept C554190296 @default.
- W4286512461 hasConcept C71924100 @default.
- W4286512461 hasConcept C76155785 @default.
- W4286512461 hasConcept C89600930 @default.
- W4286512461 hasConceptScore W4286512461C105702510 @default.
- W4286512461 hasConceptScore W4286512461C12267149 @default.
- W4286512461 hasConceptScore W4286512461C124504099 @default.
- W4286512461 hasConceptScore W4286512461C126838900 @default.
- W4286512461 hasConceptScore W4286512461C127413603 @default.
- W4286512461 hasConceptScore W4286512461C143753070 @default.
- W4286512461 hasConceptScore W4286512461C153180895 @default.
- W4286512461 hasConceptScore W4286512461C154945302 @default.
- W4286512461 hasConceptScore W4286512461C197424946 @default.
- W4286512461 hasConceptScore W4286512461C20749125 @default.
- W4286512461 hasConceptScore W4286512461C2776955114 @default.
- W4286512461 hasConceptScore W4286512461C2779863119 @default.
- W4286512461 hasConceptScore W4286512461C41008148 @default.
- W4286512461 hasConceptScore W4286512461C42360764 @default.
- W4286512461 hasConceptScore W4286512461C554190296 @default.
- W4286512461 hasConceptScore W4286512461C71924100 @default.
- W4286512461 hasConceptScore W4286512461C76155785 @default.
- W4286512461 hasConceptScore W4286512461C89600930 @default.
- W4286512461 hasLocation W42865124611 @default.
- W4286512461 hasLocation W42865124612 @default.