Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286518217> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4286518217 endingPage "444" @default.
- W4286518217 startingPage "439" @default.
- W4286518217 abstract "In this paper a robust consensus-based ensemble assisted multi-feature learnt social media link prediction model is developed. Unlike classical methods, a multi-level enhancement paradigm was considered where at first the focus was made on extracting maximum possible features depicting inter-node relationship for high accuracy of prediction. Considering robustness of the different feature sets, we extracted local, behavioural as well as topological features including Jaccard coefficient, cosine similarity, number of followers, intermediate followers, ADAR. The use of these all features as link-signifier strengthened the proposed link-prediction model to train over a large data and to ensure higher accuracy. Undeniably, the use of aforesaid multiple features-based approach could yield higher accuracy and reliability; however, at the cost of increased computation. To avoid it, different feature selection methods like rank sum test, cross-correlation, principal component analysis were applied. The use of these feature selection methods had dual intends; first to assess which type of features can have higher accuracy and second to reduce unwanted computation. This research revealed that cosine similarity-based features don’t have significant impact on eventual classification. On the contrary, cross-correlation and PCA based features had exhibited relatively higher accuracy (up to 97%). Once retrieving the set of suitable features, unlike standalone classifier based (two-class) prediction, we designed a novel consensus based ensemble learning model by using logistic regression, decision tree algorithm, deep-neuro computing algorithms (ANN-GD and ANN-LM with different hidden layers), which classified each node-pair as Linked or Not-Linked. Our proposed link-prediction model has exhibited link-prediction accuracy (98%), precision (0.93), recall (0.99), and F-Measure (0.97), which is higher than the other state-of-art machine learning methods." @default.
- W4286518217 created "2022-07-22" @default.
- W4286518217 creator A5044864005 @default.
- W4286518217 creator A5085117864 @default.
- W4286518217 date "2022-06-30" @default.
- W4286518217 modified "2023-10-17" @default.
- W4286518217 title "Ensemble Assisted Multi-Feature Learnt Social Media Link Prediction Model Using Machine Learning Techniques" @default.
- W4286518217 doi "https://doi.org/10.18280/ria.360311" @default.
- W4286518217 hasPublicationYear "2022" @default.
- W4286518217 type Work @default.
- W4286518217 citedByCount "0" @default.
- W4286518217 crossrefType "journal-article" @default.
- W4286518217 hasAuthorship W4286518217A5044864005 @default.
- W4286518217 hasAuthorship W4286518217A5085117864 @default.
- W4286518217 hasBestOaLocation W42865182171 @default.
- W4286518217 hasConcept C104317684 @default.
- W4286518217 hasConcept C119857082 @default.
- W4286518217 hasConcept C12267149 @default.
- W4286518217 hasConcept C124101348 @default.
- W4286518217 hasConcept C148483581 @default.
- W4286518217 hasConcept C153180895 @default.
- W4286518217 hasConcept C154945302 @default.
- W4286518217 hasConcept C185592680 @default.
- W4286518217 hasConcept C203519979 @default.
- W4286518217 hasConcept C2780762811 @default.
- W4286518217 hasConcept C41008148 @default.
- W4286518217 hasConcept C45942800 @default.
- W4286518217 hasConcept C52622490 @default.
- W4286518217 hasConcept C55493867 @default.
- W4286518217 hasConcept C63479239 @default.
- W4286518217 hasConcept C95623464 @default.
- W4286518217 hasConceptScore W4286518217C104317684 @default.
- W4286518217 hasConceptScore W4286518217C119857082 @default.
- W4286518217 hasConceptScore W4286518217C12267149 @default.
- W4286518217 hasConceptScore W4286518217C124101348 @default.
- W4286518217 hasConceptScore W4286518217C148483581 @default.
- W4286518217 hasConceptScore W4286518217C153180895 @default.
- W4286518217 hasConceptScore W4286518217C154945302 @default.
- W4286518217 hasConceptScore W4286518217C185592680 @default.
- W4286518217 hasConceptScore W4286518217C203519979 @default.
- W4286518217 hasConceptScore W4286518217C2780762811 @default.
- W4286518217 hasConceptScore W4286518217C41008148 @default.
- W4286518217 hasConceptScore W4286518217C45942800 @default.
- W4286518217 hasConceptScore W4286518217C52622490 @default.
- W4286518217 hasConceptScore W4286518217C55493867 @default.
- W4286518217 hasConceptScore W4286518217C63479239 @default.
- W4286518217 hasConceptScore W4286518217C95623464 @default.
- W4286518217 hasIssue "3" @default.
- W4286518217 hasLocation W42865182171 @default.
- W4286518217 hasOpenAccess W4286518217 @default.
- W4286518217 hasPrimaryLocation W42865182171 @default.
- W4286518217 hasRelatedWork W2024806819 @default.
- W4286518217 hasRelatedWork W2041636156 @default.
- W4286518217 hasRelatedWork W2120008580 @default.
- W4286518217 hasRelatedWork W2126100045 @default.
- W4286518217 hasRelatedWork W2160451891 @default.
- W4286518217 hasRelatedWork W2336974148 @default.
- W4286518217 hasRelatedWork W2381773606 @default.
- W4286518217 hasRelatedWork W3200179079 @default.
- W4286518217 hasRelatedWork W2187500075 @default.
- W4286518217 hasRelatedWork W2345184372 @default.
- W4286518217 hasVolume "36" @default.
- W4286518217 isParatext "false" @default.
- W4286518217 isRetracted "false" @default.
- W4286518217 workType "article" @default.