Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286521360> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W4286521360 abstract "We are all aware that the use of technology in every domain of life produces an enormous amount of information by overloading the amount of data on the Internet. To make data access easier, recommendation systems have been shown to be more efficient, especially performance enhancement has been significantly increased with the integration and use of machine learning algorithms. This paper compares the performance of three machine learning algorithms: Naïve Bayes, neural networks and logistic regression when applied on a movie recommender system. The movie recommender system is implemented in Python programming language using the MovieLens dataset." @default.
- W4286521360 created "2022-07-22" @default.
- W4286521360 creator A5040661461 @default.
- W4286521360 creator A5040963129 @default.
- W4286521360 creator A5084194416 @default.
- W4286521360 date "2022-06-16" @default.
- W4286521360 modified "2023-09-28" @default.
- W4286521360 title "Performance Comparison of Machine Learning Algorithms in Movie Recommender Systems" @default.
- W4286521360 doi "https://doi.org/10.1109/icest55168.2022.9828583" @default.
- W4286521360 hasPublicationYear "2022" @default.
- W4286521360 type Work @default.
- W4286521360 citedByCount "1" @default.
- W4286521360 countsByYear W42865213602023 @default.
- W4286521360 crossrefType "proceedings-article" @default.
- W4286521360 hasAuthorship W4286521360A5040661461 @default.
- W4286521360 hasAuthorship W4286521360A5040963129 @default.
- W4286521360 hasAuthorship W4286521360A5084194416 @default.
- W4286521360 hasConcept C111919701 @default.
- W4286521360 hasConcept C11413529 @default.
- W4286521360 hasConcept C119857082 @default.
- W4286521360 hasConcept C12267149 @default.
- W4286521360 hasConcept C154945302 @default.
- W4286521360 hasConcept C21569690 @default.
- W4286521360 hasConcept C2776156558 @default.
- W4286521360 hasConcept C41008148 @default.
- W4286521360 hasConcept C50644808 @default.
- W4286521360 hasConcept C519991488 @default.
- W4286521360 hasConcept C52001869 @default.
- W4286521360 hasConcept C557471498 @default.
- W4286521360 hasConceptScore W4286521360C111919701 @default.
- W4286521360 hasConceptScore W4286521360C11413529 @default.
- W4286521360 hasConceptScore W4286521360C119857082 @default.
- W4286521360 hasConceptScore W4286521360C12267149 @default.
- W4286521360 hasConceptScore W4286521360C154945302 @default.
- W4286521360 hasConceptScore W4286521360C21569690 @default.
- W4286521360 hasConceptScore W4286521360C2776156558 @default.
- W4286521360 hasConceptScore W4286521360C41008148 @default.
- W4286521360 hasConceptScore W4286521360C50644808 @default.
- W4286521360 hasConceptScore W4286521360C519991488 @default.
- W4286521360 hasConceptScore W4286521360C52001869 @default.
- W4286521360 hasConceptScore W4286521360C557471498 @default.
- W4286521360 hasLocation W42865213601 @default.
- W4286521360 hasOpenAccess W4286521360 @default.
- W4286521360 hasPrimaryLocation W42865213601 @default.
- W4286521360 hasRelatedWork W1470425429 @default.
- W4286521360 hasRelatedWork W2075040002 @default.
- W4286521360 hasRelatedWork W2402445420 @default.
- W4286521360 hasRelatedWork W3014815208 @default.
- W4286521360 hasRelatedWork W3107602296 @default.
- W4286521360 hasRelatedWork W3154115324 @default.
- W4286521360 hasRelatedWork W3202340954 @default.
- W4286521360 hasRelatedWork W4205958290 @default.
- W4286521360 hasRelatedWork W4285225238 @default.
- W4286521360 hasRelatedWork W4286521360 @default.
- W4286521360 isParatext "false" @default.
- W4286521360 isRetracted "false" @default.
- W4286521360 workType "article" @default.