Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286523930> ?p ?o ?g. }
- W4286523930 endingPage "3562" @default.
- W4286523930 startingPage "3537" @default.
- W4286523930 abstract "The estimation and mapping of vegetation traits from satellite hyperspectral imagery is entering a new era, as multiple missions have recently started and more are currently in preparatory phase. With expected ground sampling distances (GSD) ranging from 8 to 30 m, these missions could complement each other, especially over spatially heterogeneous environments where the canopy cover (CC) is low. This study focused on the retrieval of five vegetation traits (gap fraction, leaf chlorophylls (C ab) and carotenoids (Car) contents, equivalent water thickness, and leaf mass per area) of two Mediterranean-climate forests from AVIRIS-Classic (AVIRIS-C), synthetic Biodiversity, and synthetic Surface Biology and Geology (SBG) missions with 18 m, 8 m, and 30 m GSD, respectively, using a hybrid method. The synthetic SBG images were provided by NASA, while the Biodiversity images were generated from airborne AVIRIS-Next Generation hyperspectral imagery. Partial least-square regressors were trained over the outputs of the DART model to estimates vegetation traits. Estimated accuracies were assessed, when possible, by comparison with in situ measurements. We showed that estimated accuracy of gap fraction was similar between AVIRIS-C and SBG (RMSE of 0.09, R 2 of 0.8 and RMSE of 0.07, R 2 of 0.59, respectively). Leaf traits estimated accuracies were also similar between these two sensors, but only acceptable for C ab and Car (∼ 7.5 μg.cm −2 RMSE for C ab, ∼ 1.65 μg.cm −2 RMSE for Car), especially over the densest parts of the canopy. When comparing estimates obtained from Biodiversity and SBG imagery, it appeared that the denser the canopy, the more estimates from both sensors were in agreement for all leaf traits (for instance, C ab, R 2 was 0.2 for 30% ≤ CC ≤ 50% and 0.48 for CC ≥ 80%). The results show that (i) SBG imagery should lead to estimated accuracies similar to AVIRIS-C, with acceptable performances over dense canopies, and that (ii) Biodiversity imagery has a high potential to map vegetation traits over any canopy no matter its sparsity, as individual tree crowns are mostly resolved at an 8 m GSD." @default.
- W4286523930 created "2022-07-22" @default.
- W4286523930 creator A5035244581 @default.
- W4286523930 creator A5039853039 @default.
- W4286523930 creator A5041705670 @default.
- W4286523930 creator A5047056305 @default.
- W4286523930 creator A5067811542 @default.
- W4286523930 date "2022-05-19" @default.
- W4286523930 modified "2023-10-14" @default.
- W4286523930 title "Assessing vegetation traits estimates accuracies from the future SBG and biodiversity hyperspectral missions over two Mediterranean Forests" @default.
- W4286523930 cites W1006483632 @default.
- W4286523930 cites W116253160 @default.
- W4286523930 cites W1744313060 @default.
- W4286523930 cites W1772504446 @default.
- W4286523930 cites W1788012686 @default.
- W4286523930 cites W1827322724 @default.
- W4286523930 cites W1966579847 @default.
- W4286523930 cites W1978320582 @default.
- W4286523930 cites W1978915895 @default.
- W4286523930 cites W1980901385 @default.
- W4286523930 cites W1981590796 @default.
- W4286523930 cites W1985109297 @default.
- W4286523930 cites W1989302661 @default.
- W4286523930 cites W2003114532 @default.
- W4286523930 cites W2003574229 @default.
- W4286523930 cites W2010358643 @default.
- W4286523930 cites W2012645261 @default.
- W4286523930 cites W2016045787 @default.
- W4286523930 cites W2019298599 @default.
- W4286523930 cites W2022470997 @default.
- W4286523930 cites W2029118156 @default.
- W4286523930 cites W2039768055 @default.
- W4286523930 cites W2041550093 @default.
- W4286523930 cites W2043391293 @default.
- W4286523930 cites W2050499851 @default.
- W4286523930 cites W2057196195 @default.
- W4286523930 cites W2060290625 @default.
- W4286523930 cites W2064507803 @default.
- W4286523930 cites W2073951769 @default.
- W4286523930 cites W2075755760 @default.
- W4286523930 cites W2085467678 @default.
- W4286523930 cites W2091012735 @default.
- W4286523930 cites W2098000995 @default.
- W4286523930 cites W2102228204 @default.
- W4286523930 cites W2111286455 @default.
- W4286523930 cites W2116793731 @default.
- W4286523930 cites W2120294666 @default.
- W4286523930 cites W2120636518 @default.
- W4286523930 cites W2128140949 @default.
- W4286523930 cites W2130546556 @default.
- W4286523930 cites W2132328937 @default.
- W4286523930 cites W2136876992 @default.
- W4286523930 cites W2160782184 @default.
- W4286523930 cites W2162348455 @default.
- W4286523930 cites W2168508773 @default.
- W4286523930 cites W2272344155 @default.
- W4286523930 cites W2322750819 @default.
- W4286523930 cites W2438868494 @default.
- W4286523930 cites W2596051487 @default.
- W4286523930 cites W2765482437 @default.
- W4286523930 cites W2782772130 @default.
- W4286523930 cites W2792819271 @default.
- W4286523930 cites W2799903877 @default.
- W4286523930 cites W2908560465 @default.
- W4286523930 cites W2914208851 @default.
- W4286523930 cites W2921811015 @default.
- W4286523930 cites W2946556606 @default.
- W4286523930 cites W2998226466 @default.
- W4286523930 cites W3043213732 @default.
- W4286523930 cites W3085968088 @default.
- W4286523930 cites W3193650012 @default.
- W4286523930 cites W4239796796 @default.
- W4286523930 cites W633320881 @default.
- W4286523930 doi "https://doi.org/10.1080/01431161.2022.2093143" @default.
- W4286523930 hasPublicationYear "2022" @default.
- W4286523930 type Work @default.
- W4286523930 citedByCount "1" @default.
- W4286523930 countsByYear W42865239302022 @default.
- W4286523930 crossrefType "journal-article" @default.
- W4286523930 hasAuthorship W4286523930A5035244581 @default.
- W4286523930 hasAuthorship W4286523930A5039853039 @default.
- W4286523930 hasAuthorship W4286523930A5041705670 @default.
- W4286523930 hasAuthorship W4286523930A5047056305 @default.
- W4286523930 hasAuthorship W4286523930A5067811542 @default.
- W4286523930 hasBestOaLocation W42865239301 @default.
- W4286523930 hasConcept C101000010 @default.
- W4286523930 hasConcept C105795698 @default.
- W4286523930 hasConcept C130217890 @default.
- W4286523930 hasConcept C139945424 @default.
- W4286523930 hasConcept C142724271 @default.
- W4286523930 hasConcept C159078339 @default.
- W4286523930 hasConcept C18903297 @default.
- W4286523930 hasConcept C205649164 @default.
- W4286523930 hasConcept C2776133958 @default.
- W4286523930 hasConcept C2778102629 @default.
- W4286523930 hasConcept C33923547 @default.
- W4286523930 hasConcept C39432304 @default.
- W4286523930 hasConcept C4646841 @default.