Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286530332> ?p ?o ?g. }
- W4286530332 abstract "Test Case Prioritization (TCP) techniques are a key factor in reducing the regression testing costs even more when Continuous Integration (CI) practices are adopted. TCP approaches based on failure history have been adopted in this context because they are more suitable for CI environment constraints: test budget and test case volatility, that is, test cases may be added or removed over the CI cycles. Promising approaches are based on Reinforcement Learning (RL), which learns with past prioritization, guided by a reward function. In this work, we introduce a TCP approach for CI environments based on the sliding window method, which can be instantiated with different Machine Learning (ML) algorithms. Unlike other ML approaches, it does not require retraining the model to perform the prioritization and any code analysis. As an alternative for the RL approaches, we apply the Random Forest (RF) algorithm and a Long Short Term Memory (LSTM) deep learning network in our evaluation. We use three time budgets and eleven systems. The results show the applicability of the approach considering the prioritization time and the time between the CI cycles. Both algorithms take just a few seconds to execute. The RF algorithm obtained the best performance for more restrictive budgets compared to the RL approaches described in the literature. Considering all systems and budgets, RF reaches Normalized Average Percentage of Faults Detected (NAPFD) values that are the best or statistically equivalent to the best ones in around 72% of the cases, and the LSTM network in 55% of them. Moreover, we discuss some implications of our results for the usage of the algorithms evaluated." @default.
- W4286530332 created "2022-07-22" @default.
- W4286530332 creator A5032393345 @default.
- W4286530332 creator A5066420280 @default.
- W4286530332 creator A5068905436 @default.
- W4286530332 creator A5069909033 @default.
- W4286530332 date "2022-03-01" @default.
- W4286530332 modified "2023-10-17" @default.
- W4286530332 title "Machine Learning Regression Techniques for Test Case Prioritization in Continuous Integration Environment" @default.
- W4286530332 cites W1529355025 @default.
- W4286530332 cites W1635339363 @default.
- W4286530332 cites W1972041827 @default.
- W4286530332 cites W1972978214 @default.
- W4286530332 cites W1991292921 @default.
- W4286530332 cites W1998498767 @default.
- W4286530332 cites W2014515160 @default.
- W4286530332 cites W2016944307 @default.
- W4286530332 cites W2064675550 @default.
- W4286530332 cites W2086346901 @default.
- W4286530332 cites W2159614205 @default.
- W4286530332 cites W2165026081 @default.
- W4286530332 cites W2292289085 @default.
- W4286530332 cites W2547999707 @default.
- W4286530332 cites W2616260876 @default.
- W4286530332 cites W2734711024 @default.
- W4286530332 cites W2889037615 @default.
- W4286530332 cites W2892341857 @default.
- W4286530332 cites W2900513044 @default.
- W4286530332 cites W2911964244 @default.
- W4286530332 cites W2940699571 @default.
- W4286530332 cites W3021457304 @default.
- W4286530332 cites W3091492509 @default.
- W4286530332 cites W3105684902 @default.
- W4286530332 cites W3106580438 @default.
- W4286530332 cites W4229772528 @default.
- W4286530332 cites W4247128285 @default.
- W4286530332 cites W806202468 @default.
- W4286530332 doi "https://doi.org/10.1109/saner53432.2022.00034" @default.
- W4286530332 hasPublicationYear "2022" @default.
- W4286530332 type Work @default.
- W4286530332 citedByCount "1" @default.
- W4286530332 countsByYear W42865303322023 @default.
- W4286530332 crossrefType "proceedings-article" @default.
- W4286530332 hasAuthorship W4286530332A5032393345 @default.
- W4286530332 hasAuthorship W4286530332A5066420280 @default.
- W4286530332 hasAuthorship W4286530332A5068905436 @default.
- W4286530332 hasAuthorship W4286530332A5069909033 @default.
- W4286530332 hasConcept C105795698 @default.
- W4286530332 hasConcept C119857082 @default.
- W4286530332 hasConcept C127413603 @default.
- W4286530332 hasConcept C144133560 @default.
- W4286530332 hasConcept C149091818 @default.
- W4286530332 hasConcept C151730666 @default.
- W4286530332 hasConcept C154945302 @default.
- W4286530332 hasConcept C155202549 @default.
- W4286530332 hasConcept C161821725 @default.
- W4286530332 hasConcept C169258074 @default.
- W4286530332 hasConcept C186846655 @default.
- W4286530332 hasConcept C199360897 @default.
- W4286530332 hasConcept C2777615720 @default.
- W4286530332 hasConcept C2777904410 @default.
- W4286530332 hasConcept C2778712577 @default.
- W4286530332 hasConcept C2779343474 @default.
- W4286530332 hasConcept C33923547 @default.
- W4286530332 hasConcept C41008148 @default.
- W4286530332 hasConcept C539667460 @default.
- W4286530332 hasConcept C83546350 @default.
- W4286530332 hasConcept C86803240 @default.
- W4286530332 hasConcept C97541855 @default.
- W4286530332 hasConceptScore W4286530332C105795698 @default.
- W4286530332 hasConceptScore W4286530332C119857082 @default.
- W4286530332 hasConceptScore W4286530332C127413603 @default.
- W4286530332 hasConceptScore W4286530332C144133560 @default.
- W4286530332 hasConceptScore W4286530332C149091818 @default.
- W4286530332 hasConceptScore W4286530332C151730666 @default.
- W4286530332 hasConceptScore W4286530332C154945302 @default.
- W4286530332 hasConceptScore W4286530332C155202549 @default.
- W4286530332 hasConceptScore W4286530332C161821725 @default.
- W4286530332 hasConceptScore W4286530332C169258074 @default.
- W4286530332 hasConceptScore W4286530332C186846655 @default.
- W4286530332 hasConceptScore W4286530332C199360897 @default.
- W4286530332 hasConceptScore W4286530332C2777615720 @default.
- W4286530332 hasConceptScore W4286530332C2777904410 @default.
- W4286530332 hasConceptScore W4286530332C2778712577 @default.
- W4286530332 hasConceptScore W4286530332C2779343474 @default.
- W4286530332 hasConceptScore W4286530332C33923547 @default.
- W4286530332 hasConceptScore W4286530332C41008148 @default.
- W4286530332 hasConceptScore W4286530332C539667460 @default.
- W4286530332 hasConceptScore W4286530332C83546350 @default.
- W4286530332 hasConceptScore W4286530332C86803240 @default.
- W4286530332 hasConceptScore W4286530332C97541855 @default.
- W4286530332 hasFunder F4320321091 @default.
- W4286530332 hasFunder F4320322025 @default.
- W4286530332 hasLocation W42865303321 @default.
- W4286530332 hasOpenAccess W4286530332 @default.
- W4286530332 hasPrimaryLocation W42865303321 @default.
- W4286530332 hasRelatedWork W2911455822 @default.
- W4286530332 hasRelatedWork W3116896278 @default.
- W4286530332 hasRelatedWork W3204641204 @default.
- W4286530332 hasRelatedWork W4225360065 @default.