Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286539651> ?p ?o ?g. }
- W4286539651 endingPage "3698" @default.
- W4286539651 startingPage "3686" @default.
- W4286539651 abstract "Optical coherence tomography angiography (OCTA) is an imaging modality that can be used for analyzing retinal vasculature. Quantitative assessment of en face OCTA images requires accurate segmentation of the capillaries. Using deep learning approaches for this task faces two major challenges. First, acquiring sufficient manual delineations for training can take hundreds of hours. Second, OCTA images suffer from numerous contrast-related artifacts that are currently inherent to the modality and vary dramatically across scanners. We propose to solve both problems by learning a disentanglement of an anatomy component and a local contrast component from paired OCTA scans. With the contrast removed from the anatomy component, a deep learning model that takes the anatomy component as input can learn to segment vessels with a limited portion of the training images being manually labeled. Our method demonstrates state-of-the-art performance for OCTA vessel segmentation." @default.
- W4286539651 created "2022-07-22" @default.
- W4286539651 creator A5003957722 @default.
- W4286539651 creator A5004173270 @default.
- W4286539651 creator A5018846377 @default.
- W4286539651 creator A5023371809 @default.
- W4286539651 creator A5032215696 @default.
- W4286539651 creator A5050768914 @default.
- W4286539651 creator A5052025260 @default.
- W4286539651 creator A5052927521 @default.
- W4286539651 creator A5061851273 @default.
- W4286539651 creator A5066682675 @default.
- W4286539651 creator A5070081887 @default.
- W4286539651 creator A5075622613 @default.
- W4286539651 date "2022-12-01" @default.
- W4286539651 modified "2023-10-14" @default.
- W4286539651 title "Disentangled Representation Learning for OCTA Vessel Segmentation With Limited Training Data" @default.
- W4286539651 cites W1895336383 @default.
- W4286539651 cites W2040965438 @default.
- W4286539651 cites W2056193516 @default.
- W4286539651 cites W2066470779 @default.
- W4286539651 cites W2070486213 @default.
- W4286539651 cites W2145287260 @default.
- W4286539651 cites W2252774054 @default.
- W4286539651 cites W2277325960 @default.
- W4286539651 cites W2473830868 @default.
- W4286539651 cites W2510096069 @default.
- W4286539651 cites W2743884226 @default.
- W4286539651 cites W2765604220 @default.
- W4286539651 cites W2798074147 @default.
- W4286539651 cites W2799708266 @default.
- W4286539651 cites W2801088543 @default.
- W4286539651 cites W2804047627 @default.
- W4286539651 cites W2811174544 @default.
- W4286539651 cites W2884853940 @default.
- W4286539651 cites W2900999361 @default.
- W4286539651 cites W2903697270 @default.
- W4286539651 cites W2923997689 @default.
- W4286539651 cites W2946621431 @default.
- W4286539651 cites W2958632246 @default.
- W4286539651 cites W2959170286 @default.
- W4286539651 cites W2974737591 @default.
- W4286539651 cites W2978017498 @default.
- W4286539651 cites W2980185997 @default.
- W4286539651 cites W2990952734 @default.
- W4286539651 cites W3004459716 @default.
- W4286539651 cites W3008082060 @default.
- W4286539651 cites W3010862156 @default.
- W4286539651 cites W3023367080 @default.
- W4286539651 cites W3023476182 @default.
- W4286539651 cites W3089660604 @default.
- W4286539651 cites W3090872507 @default.
- W4286539651 cites W3094059395 @default.
- W4286539651 cites W3111741353 @default.
- W4286539651 cites W3112701542 @default.
- W4286539651 cites W3165557117 @default.
- W4286539651 cites W3168283161 @default.
- W4286539651 cites W3173519548 @default.
- W4286539651 cites W3197863729 @default.
- W4286539651 cites W3199073632 @default.
- W4286539651 cites W3202878440 @default.
- W4286539651 cites W4225709022 @default.
- W4286539651 doi "https://doi.org/10.1109/tmi.2022.3193029" @default.
- W4286539651 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35862335" @default.
- W4286539651 hasPublicationYear "2022" @default.
- W4286539651 type Work @default.
- W4286539651 citedByCount "3" @default.
- W4286539651 countsByYear W42865396512022 @default.
- W4286539651 countsByYear W42865396512023 @default.
- W4286539651 crossrefType "journal-article" @default.
- W4286539651 hasAuthorship W4286539651A5003957722 @default.
- W4286539651 hasAuthorship W4286539651A5004173270 @default.
- W4286539651 hasAuthorship W4286539651A5018846377 @default.
- W4286539651 hasAuthorship W4286539651A5023371809 @default.
- W4286539651 hasAuthorship W4286539651A5032215696 @default.
- W4286539651 hasAuthorship W4286539651A5050768914 @default.
- W4286539651 hasAuthorship W4286539651A5052025260 @default.
- W4286539651 hasAuthorship W4286539651A5052927521 @default.
- W4286539651 hasAuthorship W4286539651A5061851273 @default.
- W4286539651 hasAuthorship W4286539651A5066682675 @default.
- W4286539651 hasAuthorship W4286539651A5070081887 @default.
- W4286539651 hasAuthorship W4286539651A5075622613 @default.
- W4286539651 hasBestOaLocation W42865396511 @default.
- W4286539651 hasConcept C108583219 @default.
- W4286539651 hasConcept C121332964 @default.
- W4286539651 hasConcept C124504099 @default.
- W4286539651 hasConcept C126838900 @default.
- W4286539651 hasConcept C153180895 @default.
- W4286539651 hasConcept C154945302 @default.
- W4286539651 hasConcept C168167062 @default.
- W4286539651 hasConcept C17744445 @default.
- W4286539651 hasConcept C199539241 @default.
- W4286539651 hasConcept C2776359362 @default.
- W4286539651 hasConcept C2776502983 @default.
- W4286539651 hasConcept C2778818243 @default.
- W4286539651 hasConcept C2780226545 @default.
- W4286539651 hasConcept C31972630 @default.
- W4286539651 hasConcept C41008148 @default.