Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286543267> ?p ?o ?g. }
Showing items 1 to 47 of
47
with 100 items per page.
- W4286543267 abstract "Urban Building Energy Model (UBEM) approaches help analyze the energy performance of urban areas and predict the impact of different retrofit strategies. However, UBEM approaches require a high level of expertise and entail time-consuming simulations. These limitations hinder their successful application in designing and planning urban areas and supporting the city policy-making sector. Hence, it is necessary to investigate alternatives that are easy-to-use, automated, and fast. Surrogate models have been recently used to address UBEM limitations; however, they are case-specific and only work properly within specific parameter boundaries. We propose a new surrogate modeling approach to predict the energy performance of urban areas by integrating Algorithmic Design, UBEM, and Machine Learning. Our approach can automatically model and simulate thousands of building archetypes and create a broad surrogate model capable of quickly predicting annual energy profiles of large urban areas. We evaluated our approach by applying it to a case study located in Lisbon, Portugal, where we compare its use in model-based optimization routines against conventional UBEM approaches. Results show that our approach delivers predictions with acceptable accuracy at a much faster rate." @default.
- W4286543267 created "2022-07-22" @default.
- W4286543267 creator A5005601404 @default.
- W4286543267 creator A5008153156 @default.
- W4286543267 creator A5017534275 @default.
- W4286543267 creator A5039768613 @default.
- W4286543267 date "2022-01-01" @default.
- W4286543267 modified "2023-10-16" @default.
- W4286543267 title "AD-Based Surrogate Models for Simulation and Optimization of Large Urban Areas" @default.
- W4286543267 doi "https://doi.org/10.52842/conf.caadria.2022.2.689" @default.
- W4286543267 hasPublicationYear "2022" @default.
- W4286543267 type Work @default.
- W4286543267 citedByCount "2" @default.
- W4286543267 countsByYear W42865432672023 @default.
- W4286543267 crossrefType "proceedings-article" @default.
- W4286543267 hasAuthorship W4286543267A5005601404 @default.
- W4286543267 hasAuthorship W4286543267A5008153156 @default.
- W4286543267 hasAuthorship W4286543267A5017534275 @default.
- W4286543267 hasAuthorship W4286543267A5039768613 @default.
- W4286543267 hasBestOaLocation W42865432671 @default.
- W4286543267 hasConcept C119857082 @default.
- W4286543267 hasConcept C126255220 @default.
- W4286543267 hasConcept C131675550 @default.
- W4286543267 hasConcept C33923547 @default.
- W4286543267 hasConcept C41008148 @default.
- W4286543267 hasConceptScore W4286543267C119857082 @default.
- W4286543267 hasConceptScore W4286543267C126255220 @default.
- W4286543267 hasConceptScore W4286543267C131675550 @default.
- W4286543267 hasConceptScore W4286543267C33923547 @default.
- W4286543267 hasConceptScore W4286543267C41008148 @default.
- W4286543267 hasLocation W42865432671 @default.
- W4286543267 hasLocation W42865432672 @default.
- W4286543267 hasOpenAccess W4286543267 @default.
- W4286543267 hasPrimaryLocation W42865432671 @default.
- W4286543267 hasRelatedWork W2023823900 @default.
- W4286543267 hasRelatedWork W2198736978 @default.
- W4286543267 hasRelatedWork W2388894467 @default.
- W4286543267 hasRelatedWork W2474854304 @default.
- W4286543267 hasRelatedWork W2995841625 @default.
- W4286543267 hasRelatedWork W3028247601 @default.
- W4286543267 hasRelatedWork W3081404265 @default.
- W4286543267 hasRelatedWork W3109080919 @default.
- W4286543267 hasRelatedWork W4288828635 @default.
- W4286543267 hasRelatedWork W4313389065 @default.
- W4286543267 isParatext "false" @default.
- W4286543267 isRetracted "false" @default.
- W4286543267 workType "article" @default.