Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286544260> ?p ?o ?g. }
- W4286544260 endingPage "2087" @default.
- W4286544260 startingPage "2077" @default.
- W4286544260 abstract "Investigating neural mechanisms of anesthesia process and developing efficient anesthetized state detection methods are especially on high demand for clinical consciousness monitoring. Traditional anesthesia monitoring methods are not involved with the topological changes between electrodes covering the prefrontal-parietal cortices, by investigating electrocorticography (ECoG). To fill this gap, a framework based on the two-stream graph convolutional network (GCN) was proposed, i.e., one stream for extracting topological structure features, and the other one for extracting node features. The two-stream graph convolutional network includes GCN Model 1 and GCN Model 2. For GCN Model 1, brain connectivity networks were constructed by using phase lag index (PLI), representing different structure features. A common adjacency matrix was founded through the dual-graph method, the structure features were expressed on nodes. Therefore, the traditional spectral graph convolutional network can be directly applied on the graphs with changing topological structures. On the other hand, the average of the absolute signal amplitudes was calculated as node features, then a fully connected matrix was constructed as the adjacency matrix of these node features, as the input of GCN Model 2. This method learns features of both topological structure and nodes of the graph, and uses a dual-graph approach to enhance the focus on topological structure features. Based on the ECoG signals of monkeys, results show that this method which can distinguish awake state, moderate sedation and deep sedation achieved an accuracy of 92.75% in group-level experiments and mean accuracy of 93.50% in subject-level experiments. Our work verifies the excellence of the graph convolutional network in anesthesia monitoring, the high recognition accuracy also shows that the brain network may carry neurological markers associated with anesthesia." @default.
- W4286544260 created "2022-07-22" @default.
- W4286544260 creator A5026385971 @default.
- W4286544260 creator A5064498583 @default.
- W4286544260 creator A5078988597 @default.
- W4286544260 creator A5079499220 @default.
- W4286544260 creator A5087104160 @default.
- W4286544260 creator A5091654425 @default.
- W4286544260 date "2022-01-01" @default.
- W4286544260 modified "2023-10-18" @default.
- W4286544260 title "A Two-Stream Graph Convolutional Network Based on Brain Connectivity for Anesthetized States Analysis" @default.
- W4286544260 cites W1985673618 @default.
- W4286544260 cites W1999653836 @default.
- W4286544260 cites W1999803067 @default.
- W4286544260 cites W2020300751 @default.
- W4286544260 cites W2066823260 @default.
- W4286544260 cites W2080966898 @default.
- W4286544260 cites W2092598292 @default.
- W4286544260 cites W2101491865 @default.
- W4286544260 cites W2101893548 @default.
- W4286544260 cites W2112482557 @default.
- W4286544260 cites W2113423210 @default.
- W4286544260 cites W2128728535 @default.
- W4286544260 cites W2137456793 @default.
- W4286544260 cites W2155367101 @default.
- W4286544260 cites W2158787690 @default.
- W4286544260 cites W2277019871 @default.
- W4286544260 cites W2319988763 @default.
- W4286544260 cites W2323406654 @default.
- W4286544260 cites W2790404832 @default.
- W4286544260 cites W2807263932 @default.
- W4286544260 cites W2811304329 @default.
- W4286544260 cites W2883197457 @default.
- W4286544260 cites W2917658336 @default.
- W4286544260 cites W2925881161 @default.
- W4286544260 cites W2952717102 @default.
- W4286544260 cites W2953166525 @default.
- W4286544260 cites W2960600329 @default.
- W4286544260 cites W2963076818 @default.
- W4286544260 cites W2968073079 @default.
- W4286544260 cites W3006034542 @default.
- W4286544260 cites W3034369844 @default.
- W4286544260 cites W3112646844 @default.
- W4286544260 cites W3126170547 @default.
- W4286544260 cites W3139176437 @default.
- W4286544260 cites W3168649387 @default.
- W4286544260 cites W3177194336 @default.
- W4286544260 cites W3198543070 @default.
- W4286544260 cites W3213804113 @default.
- W4286544260 cites W4200418018 @default.
- W4286544260 cites W4211115131 @default.
- W4286544260 cites W4229041993 @default.
- W4286544260 doi "https://doi.org/10.1109/tnsre.2022.3193103" @default.
- W4286544260 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35862321" @default.
- W4286544260 hasPublicationYear "2022" @default.
- W4286544260 type Work @default.
- W4286544260 citedByCount "1" @default.
- W4286544260 countsByYear W42865442602023 @default.
- W4286544260 crossrefType "journal-article" @default.
- W4286544260 hasAuthorship W4286544260A5026385971 @default.
- W4286544260 hasAuthorship W4286544260A5064498583 @default.
- W4286544260 hasAuthorship W4286544260A5078988597 @default.
- W4286544260 hasAuthorship W4286544260A5079499220 @default.
- W4286544260 hasAuthorship W4286544260A5087104160 @default.
- W4286544260 hasAuthorship W4286544260A5091654425 @default.
- W4286544260 hasBestOaLocation W42865442601 @default.
- W4286544260 hasConcept C106937863 @default.
- W4286544260 hasConcept C11413529 @default.
- W4286544260 hasConcept C114614502 @default.
- W4286544260 hasConcept C132525143 @default.
- W4286544260 hasConcept C153180895 @default.
- W4286544260 hasConcept C154945302 @default.
- W4286544260 hasConcept C180356752 @default.
- W4286544260 hasConcept C184720557 @default.
- W4286544260 hasConcept C203776342 @default.
- W4286544260 hasConcept C22149727 @default.
- W4286544260 hasConcept C33923547 @default.
- W4286544260 hasConcept C41008148 @default.
- W4286544260 hasConcept C78913703 @default.
- W4286544260 hasConcept C80444323 @default.
- W4286544260 hasConcept C81363708 @default.
- W4286544260 hasConceptScore W4286544260C106937863 @default.
- W4286544260 hasConceptScore W4286544260C11413529 @default.
- W4286544260 hasConceptScore W4286544260C114614502 @default.
- W4286544260 hasConceptScore W4286544260C132525143 @default.
- W4286544260 hasConceptScore W4286544260C153180895 @default.
- W4286544260 hasConceptScore W4286544260C154945302 @default.
- W4286544260 hasConceptScore W4286544260C180356752 @default.
- W4286544260 hasConceptScore W4286544260C184720557 @default.
- W4286544260 hasConceptScore W4286544260C203776342 @default.
- W4286544260 hasConceptScore W4286544260C22149727 @default.
- W4286544260 hasConceptScore W4286544260C33923547 @default.
- W4286544260 hasConceptScore W4286544260C41008148 @default.
- W4286544260 hasConceptScore W4286544260C78913703 @default.
- W4286544260 hasConceptScore W4286544260C80444323 @default.
- W4286544260 hasConceptScore W4286544260C81363708 @default.
- W4286544260 hasFunder F4320321001 @default.
- W4286544260 hasLocation W42865442601 @default.