Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286544672> ?p ?o ?g. }
- W4286544672 endingPage "24" @default.
- W4286544672 startingPage "3" @default.
- W4286544672 abstract "Abstract Machine learning has revolutionized every facet of human life, while also becoming more accessible and ubiquitous. Its prevalence has had a powerful impact in healthcare, with numerous applications and intelligent systems achieving clinical level expertise. However, building robust and generalizable systems relies on training algorithms in a centralized fashion using large, heterogeneous datasets. In medicine, these datasets are time consuming to annotate and difficult to collect centrally due to privacy concerns. Recently, Federated Learning has been proposed as a distributed learning technique to alleviate many of these privacy concerns by providing a decentralized training paradigm for models using large, distributed data. This new approach has become the defacto way of building machine learning models in multiple industries (e.g. edge computing, smartphones). Due to its strong potential, Federated Learning is also becoming a popular training method in healthcare, where patient privacy is of paramount concern. In this paper we performed an extensive literature review to identify state-of-the-art Federated Learning applications for cancer research and clinical oncology analysis. Our objective is to provide readers with an overview of the evolving Federated Learning landscape, with a focus on applications and algorithms in oncology space. Moreover, we hope that this review will help readers to identify potential needs and future directions for research and development." @default.
- W4286544672 created "2022-07-22" @default.
- W4286544672 creator A5041913317 @default.
- W4286544672 creator A5067628513 @default.
- W4286544672 creator A5071976104 @default.
- W4286544672 creator A5076596982 @default.
- W4286544672 creator A5091880579 @default.
- W4286544672 date "2022-01-01" @default.
- W4286544672 modified "2023-10-16" @default.
- W4286544672 title "A Review of Medical Federated Learning: Applications in Oncology and Cancer Research" @default.
- W4286544672 cites W1641498739 @default.
- W4286544672 cites W2095224843 @default.
- W4286544672 cites W2097117768 @default.
- W4286544672 cites W2108598243 @default.
- W4286544672 cites W2144499799 @default.
- W4286544672 cites W2194775991 @default.
- W4286544672 cites W2610486821 @default.
- W4286544672 cites W2731899572 @default.
- W4286544672 cites W2743501370 @default.
- W4286544672 cites W2795354529 @default.
- W4286544672 cites W2897230576 @default.
- W4286544672 cites W2898368508 @default.
- W4286544672 cites W2900702386 @default.
- W4286544672 cites W2915050524 @default.
- W4286544672 cites W2962824366 @default.
- W4286544672 cites W2963444790 @default.
- W4286544672 cites W2963466845 @default.
- W4286544672 cites W2963946669 @default.
- W4286544672 cites W2970408908 @default.
- W4286544672 cites W2979637109 @default.
- W4286544672 cites W2986473347 @default.
- W4286544672 cites W2995099704 @default.
- W4286544672 cites W2995225687 @default.
- W4286544672 cites W3007011416 @default.
- W4286544672 cites W3035014113 @default.
- W4286544672 cites W3036485160 @default.
- W4286544672 cites W3041509883 @default.
- W4286544672 cites W3045674654 @default.
- W4286544672 cites W3086590218 @default.
- W4286544672 cites W3086809868 @default.
- W4286544672 cites W3090152840 @default.
- W4286544672 cites W3091267000 @default.
- W4286544672 cites W3091404410 @default.
- W4286544672 cites W3094072509 @default.
- W4286544672 cites W3097205619 @default.
- W4286544672 cites W3098488418 @default.
- W4286544672 cites W3102785203 @default.
- W4286544672 cites W3105667267 @default.
- W4286544672 cites W3108533068 @default.
- W4286544672 cites W3128304793 @default.
- W4286544672 cites W3130359626 @default.
- W4286544672 cites W3135686383 @default.
- W4286544672 cites W3138572234 @default.
- W4286544672 cites W3138597937 @default.
- W4286544672 cites W3156448175 @default.
- W4286544672 cites W3159069780 @default.
- W4286544672 cites W3160164683 @default.
- W4286544672 cites W3165289654 @default.
- W4286544672 cites W3175307072 @default.
- W4286544672 cites W3176588429 @default.
- W4286544672 cites W3177828909 @default.
- W4286544672 cites W3179192472 @default.
- W4286544672 cites W3180884825 @default.
- W4286544672 cites W3190779915 @default.
- W4286544672 cites W3191869388 @default.
- W4286544672 cites W3193908336 @default.
- W4286544672 cites W3196335237 @default.
- W4286544672 cites W3198908542 @default.
- W4286544672 cites W3200967367 @default.
- W4286544672 cites W3201745428 @default.
- W4286544672 cites W3203780767 @default.
- W4286544672 cites W3204212595 @default.
- W4286544672 cites W3204295664 @default.
- W4286544672 cites W3204597713 @default.
- W4286544672 cites W4200120190 @default.
- W4286544672 cites W4210968720 @default.
- W4286544672 cites W4285337687 @default.
- W4286544672 doi "https://doi.org/10.1007/978-3-031-08999-2_1" @default.
- W4286544672 hasPublicationYear "2022" @default.
- W4286544672 type Work @default.
- W4286544672 citedByCount "12" @default.
- W4286544672 countsByYear W42865446722023 @default.
- W4286544672 crossrefType "book-chapter" @default.
- W4286544672 hasAuthorship W4286544672A5041913317 @default.
- W4286544672 hasAuthorship W4286544672A5067628513 @default.
- W4286544672 hasAuthorship W4286544672A5071976104 @default.
- W4286544672 hasAuthorship W4286544672A5076596982 @default.
- W4286544672 hasAuthorship W4286544672A5091880579 @default.
- W4286544672 hasBestOaLocation W42865446721 @default.
- W4286544672 hasConcept C119857082 @default.
- W4286544672 hasConcept C154945302 @default.
- W4286544672 hasConcept C160735492 @default.
- W4286544672 hasConcept C162324750 @default.
- W4286544672 hasConcept C2522767166 @default.
- W4286544672 hasConcept C2992525071 @default.
- W4286544672 hasConcept C41008148 @default.
- W4286544672 hasConcept C50522688 @default.
- W4286544672 hasConceptScore W4286544672C119857082 @default.