Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286544732> ?p ?o ?g. }
- W4286544732 endingPage "10921" @default.
- W4286544732 startingPage "10914" @default.
- W4286544732 abstract "Vehicle-to-everything (V2X) communication techniques enable the collaboration between vehicles and many other entities in the neighboring environment, which could fundamentally improve the perception system for autonomous driving. However, the lack of a public dataset significantly restricts the research progress of collaborative perception. To fill this gap, we present V2X-Sim, a comprehensive simulated multi-agent perception dataset for V2X-aided autonomous driving. V2X-Sim provides: (1) multi-agent sensor recordings from the road-side unit (RSU) and multiple vehicles that enable collaborative perception, (2) multi-modality sensor streams that facilitate multi-modality perception, and (3) diverse ground truths that support various perception tasks. Meanwhile, we build an open-source testbed and provide a benchmark for the state-of-the-art collaborative perception algorithms on three tasks, including detection, tracking and segmentation. V2X-Sim seeks to stimulate collaborative perception research for autonomous driving before realistic datasets become widely available." @default.
- W4286544732 created "2022-07-22" @default.
- W4286544732 creator A5002719380 @default.
- W4286544732 creator A5018515599 @default.
- W4286544732 creator A5031067027 @default.
- W4286544732 creator A5048532240 @default.
- W4286544732 creator A5051530288 @default.
- W4286544732 creator A5079509003 @default.
- W4286544732 creator A5085287748 @default.
- W4286544732 date "2022-10-01" @default.
- W4286544732 modified "2023-10-16" @default.
- W4286544732 title "V2X-Sim: Multi-Agent Collaborative Perception Dataset and Benchmark for Autonomous Driving" @default.
- W4286544732 cites W2031575274 @default.
- W4286544732 cites W2124781496 @default.
- W4286544732 cites W2150066425 @default.
- W4286544732 cites W2252355370 @default.
- W4286544732 cites W2340897893 @default.
- W4286544732 cites W2349991456 @default.
- W4286544732 cites W2431874326 @default.
- W4286544732 cites W2619045675 @default.
- W4286544732 cites W2781228439 @default.
- W4286544732 cites W2789893592 @default.
- W4286544732 cites W2790461669 @default.
- W4286544732 cites W2903267266 @default.
- W4286544732 cites W2904551995 @default.
- W4286544732 cites W2911486422 @default.
- W4286544732 cites W2955128325 @default.
- W4286544732 cites W2955189650 @default.
- W4286544732 cites W2963292632 @default.
- W4286544732 cites W2967740791 @default.
- W4286544732 cites W2982681137 @default.
- W4286544732 cites W2990187711 @default.
- W4286544732 cites W2991216808 @default.
- W4286544732 cites W2996759437 @default.
- W4286544732 cites W3004734937 @default.
- W4286544732 cites W3016409148 @default.
- W4286544732 cites W3034295100 @default.
- W4286544732 cites W3034716600 @default.
- W4286544732 cites W3035098634 @default.
- W4286544732 cites W3035172746 @default.
- W4286544732 cites W3035574168 @default.
- W4286544732 cites W3089903748 @default.
- W4286544732 cites W3090375251 @default.
- W4286544732 cites W3104778224 @default.
- W4286544732 cites W3109991383 @default.
- W4286544732 cites W3114281349 @default.
- W4286544732 cites W3114753236 @default.
- W4286544732 cites W3156216502 @default.
- W4286544732 cites W3173280621 @default.
- W4286544732 cites W3176465513 @default.
- W4286544732 cites W3176802407 @default.
- W4286544732 cites W3181350748 @default.
- W4286544732 cites W3201193904 @default.
- W4286544732 cites W3204792207 @default.
- W4286544732 cites W3210076120 @default.
- W4286544732 cites W4206264583 @default.
- W4286544732 doi "https://doi.org/10.1109/lra.2022.3192802" @default.
- W4286544732 hasPublicationYear "2022" @default.
- W4286544732 type Work @default.
- W4286544732 citedByCount "16" @default.
- W4286544732 countsByYear W42865447322022 @default.
- W4286544732 countsByYear W42865447322023 @default.
- W4286544732 crossrefType "journal-article" @default.
- W4286544732 hasAuthorship W4286544732A5002719380 @default.
- W4286544732 hasAuthorship W4286544732A5018515599 @default.
- W4286544732 hasAuthorship W4286544732A5031067027 @default.
- W4286544732 hasAuthorship W4286544732A5048532240 @default.
- W4286544732 hasAuthorship W4286544732A5051530288 @default.
- W4286544732 hasAuthorship W4286544732A5079509003 @default.
- W4286544732 hasAuthorship W4286544732A5085287748 @default.
- W4286544732 hasBestOaLocation W42865447322 @default.
- W4286544732 hasConcept C107457646 @default.
- W4286544732 hasConcept C119857082 @default.
- W4286544732 hasConcept C13280743 @default.
- W4286544732 hasConcept C136764020 @default.
- W4286544732 hasConcept C154945302 @default.
- W4286544732 hasConcept C169760540 @default.
- W4286544732 hasConcept C185798385 @default.
- W4286544732 hasConcept C205649164 @default.
- W4286544732 hasConcept C26760741 @default.
- W4286544732 hasConcept C2776010242 @default.
- W4286544732 hasConcept C2780226545 @default.
- W4286544732 hasConcept C31395832 @default.
- W4286544732 hasConcept C41008148 @default.
- W4286544732 hasConcept C86803240 @default.
- W4286544732 hasConcept C90509273 @default.
- W4286544732 hasConceptScore W4286544732C107457646 @default.
- W4286544732 hasConceptScore W4286544732C119857082 @default.
- W4286544732 hasConceptScore W4286544732C13280743 @default.
- W4286544732 hasConceptScore W4286544732C136764020 @default.
- W4286544732 hasConceptScore W4286544732C154945302 @default.
- W4286544732 hasConceptScore W4286544732C169760540 @default.
- W4286544732 hasConceptScore W4286544732C185798385 @default.
- W4286544732 hasConceptScore W4286544732C205649164 @default.
- W4286544732 hasConceptScore W4286544732C26760741 @default.
- W4286544732 hasConceptScore W4286544732C2776010242 @default.
- W4286544732 hasConceptScore W4286544732C2780226545 @default.
- W4286544732 hasConceptScore W4286544732C31395832 @default.