Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286560249> ?p ?o ?g. }
- W4286560249 abstract "Reasonable cultivation is an important part of the protection work of endangered species. The timely and nondestructive monitoring of chlorophyll can provide a basis for the accurate management and intelligent development of cultivation. The image analysis method has been applied in the nutrient estimation of many economic crops, but information on endangered tree species is seldom reported. Moreover, shade control, as the common seedling management measure, has a significant impact on chlorophyll, but shade levels are rarely discussed in chlorophyll estimation and are used as variables to improve model accuracy. In this study, 2-year-old seedlings of tropical and endangered Hopea hainanensis were taken as the research object, and the SPAD value was used to represent the relative chlorophyll content. Based on the performance comparison of RGB and multispectral (MS) images using different algorithms, a low-cost SPAD estimation method combined with a machine learning algorithm that is adaptable to different shade conditions was proposed. The SPAD values changed significantly at different shade levels (p < 0.01), and 50% shade in the orthographic direction was conducive to chlorophyll accumulation in seedling leaves. The coefficient of determination (R2), root mean square error (RMSE), and average absolute percent error (MAPE) were used as indicators, and the models with dummy variables or random effects of shade greatly improved the goodness of fit, allowing better adaption to monitoring under different shade conditions. Most of the RGB and MS vegetation indices (VIs) were significantly correlated with the SPAD values, but some VIs exhibited multicollinearity (variance inflation factor (VIF) > 10). Among RGB VIs, RGRI had the strongest correlation, but multiple VIs filtered by the Lasso algorithm had a stronger ability to interpret the SPAD data, and there was no multicollinearity (VIF < 10). A comparison of the use of multiple VIs to estimate SPAD indicated that Random forest (RF) had the highest fitting ability, followed by Support vector regression (SVR), linear mixed effect model (LMM), and ordinary least squares regression (OLR). In addition, the performance of MS VIs was superior to that of RGB VIs. The R2 of the optimal model reached 0.9389 for the modeling samples and 0.8013 for the test samples. These findings reinforce the effectiveness of using VIs to estimate the SPAD value of H. hainanensis under different shade conditions based on machine learning and provide a reference for the selection of image data sources." @default.
- W4286560249 created "2022-07-22" @default.
- W4286560249 creator A5006069186 @default.
- W4286560249 creator A5030841784 @default.
- W4286560249 creator A5049078993 @default.
- W4286560249 creator A5084138890 @default.
- W4286560249 date "2022-07-22" @default.
- W4286560249 modified "2023-10-02" @default.
- W4286560249 title "Performance comparison of RGB and multispectral vegetation indices based on machine learning for estimating Hopea hainanensis SPAD values under different shade conditions" @default.
- W4286560249 cites W1563088657 @default.
- W4286560249 cites W1965696795 @default.
- W4286560249 cites W1978788419 @default.
- W4286560249 cites W1989863789 @default.
- W4286560249 cites W2003425998 @default.
- W4286560249 cites W2011010318 @default.
- W4286560249 cites W2032913773 @default.
- W4286560249 cites W2064636932 @default.
- W4286560249 cites W2072047493 @default.
- W4286560249 cites W2085519972 @default.
- W4286560249 cites W2096996101 @default.
- W4286560249 cites W2125230412 @default.
- W4286560249 cites W2128866545 @default.
- W4286560249 cites W2132340722 @default.
- W4286560249 cites W2135046866 @default.
- W4286560249 cites W2161774355 @default.
- W4286560249 cites W2163450852 @default.
- W4286560249 cites W2166599965 @default.
- W4286560249 cites W2167787089 @default.
- W4286560249 cites W2178589562 @default.
- W4286560249 cites W2340480861 @default.
- W4286560249 cites W2592618579 @default.
- W4286560249 cites W2606737816 @default.
- W4286560249 cites W2714640284 @default.
- W4286560249 cites W2760888277 @default.
- W4286560249 cites W2767657507 @default.
- W4286560249 cites W2767812726 @default.
- W4286560249 cites W2802324054 @default.
- W4286560249 cites W2805393642 @default.
- W4286560249 cites W2808198652 @default.
- W4286560249 cites W2883568671 @default.
- W4286560249 cites W2896310214 @default.
- W4286560249 cites W2911964244 @default.
- W4286560249 cites W2942962169 @default.
- W4286560249 cites W2967728021 @default.
- W4286560249 cites W2989724458 @default.
- W4286560249 cites W2991787494 @default.
- W4286560249 cites W2994627331 @default.
- W4286560249 cites W3028263306 @default.
- W4286560249 cites W3040221110 @default.
- W4286560249 cites W3087922632 @default.
- W4286560249 cites W3102086269 @default.
- W4286560249 cites W3169029864 @default.
- W4286560249 cites W3180151162 @default.
- W4286560249 cites W3196431754 @default.
- W4286560249 cites W3199107557 @default.
- W4286560249 cites W3200349127 @default.
- W4286560249 cites W3205253527 @default.
- W4286560249 cites W4211038627 @default.
- W4286560249 cites W2038026274 @default.
- W4286560249 doi "https://doi.org/10.3389/fpls.2022.928953" @default.
- W4286560249 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35937316" @default.
- W4286560249 hasPublicationYear "2022" @default.
- W4286560249 type Work @default.
- W4286560249 citedByCount "12" @default.
- W4286560249 countsByYear W42865602492022 @default.
- W4286560249 countsByYear W42865602492023 @default.
- W4286560249 crossrefType "journal-article" @default.
- W4286560249 hasAuthorship W4286560249A5006069186 @default.
- W4286560249 hasAuthorship W4286560249A5030841784 @default.
- W4286560249 hasAuthorship W4286560249A5049078993 @default.
- W4286560249 hasAuthorship W4286560249A5084138890 @default.
- W4286560249 hasBestOaLocation W42865602491 @default.
- W4286560249 hasConcept C105795698 @default.
- W4286560249 hasConcept C128990827 @default.
- W4286560249 hasConcept C139945424 @default.
- W4286560249 hasConcept C150217764 @default.
- W4286560249 hasConcept C154945302 @default.
- W4286560249 hasConcept C173163844 @default.
- W4286560249 hasConcept C33923547 @default.
- W4286560249 hasConcept C41008148 @default.
- W4286560249 hasConcept C86803240 @default.
- W4286560249 hasConceptScore W4286560249C105795698 @default.
- W4286560249 hasConceptScore W4286560249C128990827 @default.
- W4286560249 hasConceptScore W4286560249C139945424 @default.
- W4286560249 hasConceptScore W4286560249C150217764 @default.
- W4286560249 hasConceptScore W4286560249C154945302 @default.
- W4286560249 hasConceptScore W4286560249C173163844 @default.
- W4286560249 hasConceptScore W4286560249C33923547 @default.
- W4286560249 hasConceptScore W4286560249C41008148 @default.
- W4286560249 hasConceptScore W4286560249C86803240 @default.
- W4286560249 hasFunder F4320321001 @default.
- W4286560249 hasLocation W42865602491 @default.
- W4286560249 hasLocation W42865602492 @default.
- W4286560249 hasLocation W42865602493 @default.
- W4286560249 hasLocation W42865602494 @default.
- W4286560249 hasOpenAccess W4286560249 @default.
- W4286560249 hasPrimaryLocation W42865602491 @default.
- W4286560249 hasRelatedWork W2361016007 @default.
- W4286560249 hasRelatedWork W2598237895 @default.
- W4286560249 hasRelatedWork W2625413331 @default.