Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286561208> ?p ?o ?g. }
- W4286561208 abstract "Automatic item generation (AIG) has the potential to greatly expand the number of items for educational assessments, while simultaneously allowing for a more construct-driven approach to item development. However, the traditional item modeling approach in AIG is limited in scope to content areas that are relatively easy to model (such as math problems), and depends on highly skilled content experts to create each model. In this paper we describe the interactive reading task, a transformer-based deep language modeling approach for creating reading comprehension assessments. This approach allows a fully automated process for the creation of source passages together with a wide range of comprehension questions about the passages. The format of the questions allows automatic scoring of responses with high fidelity (e.g., selected response questions). We present the results of a large-scale pilot of the interactive reading task, with hundreds of passages and thousands of questions. These passages were administered as part of the practice test of the Duolingo English Test. Human review of the materials and psychometric analyses of test taker results demonstrate the feasibility of this approach for automatic creation of complex educational assessments." @default.
- W4286561208 created "2022-07-22" @default.
- W4286561208 creator A5014406159 @default.
- W4286561208 creator A5020799829 @default.
- W4286561208 creator A5029949169 @default.
- W4286561208 creator A5043400579 @default.
- W4286561208 creator A5066843321 @default.
- W4286561208 creator A5069338102 @default.
- W4286561208 creator A5084103813 @default.
- W4286561208 date "2022-07-22" @default.
- W4286561208 modified "2023-10-14" @default.
- W4286561208 title "The interactive reading task: Transformer-based automatic item generation" @default.
- W4286561208 cites W146206334 @default.
- W4286561208 cites W1593930920 @default.
- W4286561208 cites W1828457054 @default.
- W4286561208 cites W1993225241 @default.
- W4286561208 cites W2006932483 @default.
- W4286561208 cites W2024475444 @default.
- W4286561208 cites W2044688197 @default.
- W4286561208 cites W2045892050 @default.
- W4286561208 cites W2075201173 @default.
- W4286561208 cites W2079145130 @default.
- W4286561208 cites W2084314409 @default.
- W4286561208 cites W2088987187 @default.
- W4286561208 cites W2102090982 @default.
- W4286561208 cites W2107643868 @default.
- W4286561208 cites W2135995390 @default.
- W4286561208 cites W2229270207 @default.
- W4286561208 cites W2301128046 @default.
- W4286561208 cites W2514166524 @default.
- W4286561208 cites W2524369579 @default.
- W4286561208 cites W2532524286 @default.
- W4286561208 cites W2593853883 @default.
- W4286561208 cites W2605073321 @default.
- W4286561208 cites W2791246286 @default.
- W4286561208 cites W2964304126 @default.
- W4286561208 cites W2970539732 @default.
- W4286561208 cites W2980708516 @default.
- W4286561208 cites W2989613245 @default.
- W4286561208 cites W2990045827 @default.
- W4286561208 cites W3019082520 @default.
- W4286561208 cites W3188295510 @default.
- W4286561208 cites W3210957772 @default.
- W4286561208 cites W4205245217 @default.
- W4286561208 cites W4206268106 @default.
- W4286561208 cites W4210738361 @default.
- W4286561208 cites W4226163610 @default.
- W4286561208 cites W4246329300 @default.
- W4286561208 cites W43048615 @default.
- W4286561208 cites W4385245566 @default.
- W4286561208 doi "https://doi.org/10.3389/frai.2022.903077" @default.
- W4286561208 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35937141" @default.
- W4286561208 hasPublicationYear "2022" @default.
- W4286561208 type Work @default.
- W4286561208 citedByCount "6" @default.
- W4286561208 countsByYear W42865612082023 @default.
- W4286561208 crossrefType "journal-article" @default.
- W4286561208 hasAuthorship W4286561208A5014406159 @default.
- W4286561208 hasAuthorship W4286561208A5020799829 @default.
- W4286561208 hasAuthorship W4286561208A5029949169 @default.
- W4286561208 hasAuthorship W4286561208A5043400579 @default.
- W4286561208 hasAuthorship W4286561208A5066843321 @default.
- W4286561208 hasAuthorship W4286561208A5069338102 @default.
- W4286561208 hasAuthorship W4286561208A5084103813 @default.
- W4286561208 hasBestOaLocation W42865612081 @default.
- W4286561208 hasConcept C107457646 @default.
- W4286561208 hasConcept C113364801 @default.
- W4286561208 hasConcept C119599485 @default.
- W4286561208 hasConcept C121332964 @default.
- W4286561208 hasConcept C127413603 @default.
- W4286561208 hasConcept C151730666 @default.
- W4286561208 hasConcept C154945302 @default.
- W4286561208 hasConcept C162324750 @default.
- W4286561208 hasConcept C165801399 @default.
- W4286561208 hasConcept C17744445 @default.
- W4286561208 hasConcept C187736073 @default.
- W4286561208 hasConcept C199360897 @default.
- W4286561208 hasConcept C199539241 @default.
- W4286561208 hasConcept C204321447 @default.
- W4286561208 hasConcept C2776459999 @default.
- W4286561208 hasConcept C2777267654 @default.
- W4286561208 hasConcept C2778780117 @default.
- W4286561208 hasConcept C2780451532 @default.
- W4286561208 hasConcept C41008148 @default.
- W4286561208 hasConcept C49774154 @default.
- W4286561208 hasConcept C511192102 @default.
- W4286561208 hasConcept C554936623 @default.
- W4286561208 hasConcept C62520636 @default.
- W4286561208 hasConcept C66322947 @default.
- W4286561208 hasConcept C76155785 @default.
- W4286561208 hasConcept C86803240 @default.
- W4286561208 hasConceptScore W4286561208C107457646 @default.
- W4286561208 hasConceptScore W4286561208C113364801 @default.
- W4286561208 hasConceptScore W4286561208C119599485 @default.
- W4286561208 hasConceptScore W4286561208C121332964 @default.
- W4286561208 hasConceptScore W4286561208C127413603 @default.
- W4286561208 hasConceptScore W4286561208C151730666 @default.
- W4286561208 hasConceptScore W4286561208C154945302 @default.
- W4286561208 hasConceptScore W4286561208C162324750 @default.
- W4286561208 hasConceptScore W4286561208C165801399 @default.