Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286565910> ?p ?o ?g. }
- W4286565910 endingPage "195" @default.
- W4286565910 startingPage "184" @default.
- W4286565910 abstract "An electroencephalogram (EEG)–based brain–computer interface (BCI) speller is a system that conveys thought to enable communication between humans and computers using brain conduction. This system is useful for patients with severe disabilities and provides a way for them to communicate with computers or with other people. The EEG-based BCI speller system is being studied in various ways, but it is vulnerable to adversarial examples. An adversarial example is an attack sample created by adding a little noise to an original sample in such a way that it appears normal to humans but will be misclassified by the model. Adversarial examples can be useful in situations such as military scenarios in which there is a mixture of friendly models and enemy models. When a friendly BCI speller and an enemy BCI speller coexist, an adversarial example may be mistakenly taken by the enemy BCI speller to signal an incorrect intention on the part of the person with a disability; in another scenario, an enemy BCI speller may leak personal information of the individual with a disability or initiate unwanted financial transactions. In this paper, we propose a method to create such a sample, called a “friend-guard” EEG adversarial example. In the proposed method, a very small EEG signal is added to an original sample, creating an adversarial example that the friendly model will classify correctly but the enemy model will classify incorrectly. A P300 dataset was used in the experimental evaluation of the method, and linear regression models were used as target models. In the experiment, the proposed method was able to generate friend-guard EEG adversarial examples that were incorrectly classified with success rates of 88.4% and 69.7% by the enemy model for subject A and subject B, respectively, while maintaining the accuracy of the friendly model at 85.9% and 74.4% for subjects A and B, respectively." @default.
- W4286565910 created "2022-07-22" @default.
- W4286565910 creator A5040423887 @default.
- W4286565910 creator A5079070649 @default.
- W4286565910 date "2022-09-01" @default.
- W4286565910 modified "2023-10-14" @default.
- W4286565910 title "Friend-guard adversarial noise designed for electroencephalogram-based brain–computer interface spellers" @default.
- W4286565910 cites W1968411139 @default.
- W4286565910 cites W1993704367 @default.
- W4286565910 cites W2076063813 @default.
- W4286565910 cites W2104063964 @default.
- W4286565910 cites W2125908420 @default.
- W4286565910 cites W2160815625 @default.
- W4286565910 cites W2168765820 @default.
- W4286565910 cites W2406556600 @default.
- W4286565910 cites W2537744397 @default.
- W4286565910 cites W2543927648 @default.
- W4286565910 cites W2570729414 @default.
- W4286565910 cites W2602279467 @default.
- W4286565910 cites W2605086659 @default.
- W4286565910 cites W2605759213 @default.
- W4286565910 cites W2744936117 @default.
- W4286565910 cites W2747927676 @default.
- W4286565910 cites W2770384163 @default.
- W4286565910 cites W2794480229 @default.
- W4286565910 cites W2796212253 @default.
- W4286565910 cites W2808255765 @default.
- W4286565910 cites W2887037551 @default.
- W4286565910 cites W2921231825 @default.
- W4286565910 cites W2930980596 @default.
- W4286565910 cites W2944071464 @default.
- W4286565910 cites W2963564844 @default.
- W4286565910 cites W2973147862 @default.
- W4286565910 cites W2980609230 @default.
- W4286565910 cites W2991224771 @default.
- W4286565910 cites W3008533131 @default.
- W4286565910 cites W3009134349 @default.
- W4286565910 cites W3009157386 @default.
- W4286565910 cites W3084315148 @default.
- W4286565910 cites W3088043725 @default.
- W4286565910 cites W3121810080 @default.
- W4286565910 doi "https://doi.org/10.1016/j.neucom.2022.06.089" @default.
- W4286565910 hasPublicationYear "2022" @default.
- W4286565910 type Work @default.
- W4286565910 citedByCount "4" @default.
- W4286565910 countsByYear W42865659102022 @default.
- W4286565910 countsByYear W42865659102023 @default.
- W4286565910 crossrefType "journal-article" @default.
- W4286565910 hasAuthorship W4286565910A5040423887 @default.
- W4286565910 hasAuthorship W4286565910A5079070649 @default.
- W4286565910 hasConcept C113843644 @default.
- W4286565910 hasConcept C115961682 @default.
- W4286565910 hasConcept C118552586 @default.
- W4286565910 hasConcept C119857082 @default.
- W4286565910 hasConcept C129307140 @default.
- W4286565910 hasConcept C141141315 @default.
- W4286565910 hasConcept C154945302 @default.
- W4286565910 hasConcept C15744967 @default.
- W4286565910 hasConcept C157915830 @default.
- W4286565910 hasConcept C173201364 @default.
- W4286565910 hasConcept C173608175 @default.
- W4286565910 hasConcept C185592680 @default.
- W4286565910 hasConcept C198104137 @default.
- W4286565910 hasConcept C198531522 @default.
- W4286565910 hasConcept C199360897 @default.
- W4286565910 hasConcept C28490314 @default.
- W4286565910 hasConcept C37736160 @default.
- W4286565910 hasConcept C38652104 @default.
- W4286565910 hasConcept C41008148 @default.
- W4286565910 hasConcept C41065033 @default.
- W4286565910 hasConcept C43617362 @default.
- W4286565910 hasConcept C522805319 @default.
- W4286565910 hasConcept C76155785 @default.
- W4286565910 hasConcept C99498987 @default.
- W4286565910 hasConceptScore W4286565910C113843644 @default.
- W4286565910 hasConceptScore W4286565910C115961682 @default.
- W4286565910 hasConceptScore W4286565910C118552586 @default.
- W4286565910 hasConceptScore W4286565910C119857082 @default.
- W4286565910 hasConceptScore W4286565910C129307140 @default.
- W4286565910 hasConceptScore W4286565910C141141315 @default.
- W4286565910 hasConceptScore W4286565910C154945302 @default.
- W4286565910 hasConceptScore W4286565910C15744967 @default.
- W4286565910 hasConceptScore W4286565910C157915830 @default.
- W4286565910 hasConceptScore W4286565910C173201364 @default.
- W4286565910 hasConceptScore W4286565910C173608175 @default.
- W4286565910 hasConceptScore W4286565910C185592680 @default.
- W4286565910 hasConceptScore W4286565910C198104137 @default.
- W4286565910 hasConceptScore W4286565910C198531522 @default.
- W4286565910 hasConceptScore W4286565910C199360897 @default.
- W4286565910 hasConceptScore W4286565910C28490314 @default.
- W4286565910 hasConceptScore W4286565910C37736160 @default.
- W4286565910 hasConceptScore W4286565910C38652104 @default.
- W4286565910 hasConceptScore W4286565910C41008148 @default.
- W4286565910 hasConceptScore W4286565910C41065033 @default.
- W4286565910 hasConceptScore W4286565910C43617362 @default.
- W4286565910 hasConceptScore W4286565910C522805319 @default.
- W4286565910 hasConceptScore W4286565910C76155785 @default.
- W4286565910 hasConceptScore W4286565910C99498987 @default.