Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286567461> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4286567461 endingPage "118175" @default.
- W4286567461 startingPage "118175" @default.
- W4286567461 abstract "The consequences of fake news and rumors have adversely affected social and political stability worldwide. Many such incidents have been reported, which resulted in mass chaos with the loss of lives and property. In response, many researchers have developed models for the veracity detection of rumors on social media. The recent advances in veracity detection models incorporate the use of Deep Neural Networks (DNN) over statistical and traditional machine learning based models. Current veracity detection approaches leverage powerful DNN models such as Transformer, Adversarial Networks, Graph Convolutional Networks (GCN), Variational Autoencoder (VAE) etc., along with exploiting the intuition of Multi-task learning (MTL) approach. In addition, most of these aforesaid well-known models rely on auxiliary (additional) information to a good extent. Presently, these recent models’ dependence on (1) auxiliary information and multiple tasks restrain productivity and incur cost on resources. Moreover, (2) the structural constraints of these models put a limiting effect on model deliverance. These two shortcomings of the recent models result in poor resource utilization and unstructured feature organization of the objective task, resulting in a compromised output of the model. In this paper, we present an efficient Segregated Non-overlapping and Collectively exhaustive DNN model (SeNoCe) which mitigates the effects of poor utilization of resources and enhances the model performance without the aid of auxiliary information or tasks which incur good manual efforts and costs. SeNoCe is capable of utilizing the fine-granularity of implicit features as attention for task identification. SeNoCe reports a major performance improvement over the state-of-the-art techniques on standard benchmark metrics across two real-world rumor datasets. It records a minimum of 24.06−12.8%, 53.1−49.2% improvement in terms of Macro F and Accuracy, respectively over the best performing state-of-the-art." @default.
- W4286567461 created "2022-07-22" @default.
- W4286567461 creator A5002025003 @default.
- W4286567461 creator A5003396109 @default.
- W4286567461 creator A5010425065 @default.
- W4286567461 creator A5063672573 @default.
- W4286567461 date "2022-12-01" @default.
- W4286567461 modified "2023-09-27" @default.
- W4286567461 title "Towards an orthogonality constraint-based feature partitioning approach to classify veracity and identify stance overlapping of rumors on twitter" @default.
- W4286567461 cites W1638051351 @default.
- W4286567461 cites W1975594555 @default.
- W4286567461 cites W2051405935 @default.
- W4286567461 cites W2084591134 @default.
- W4286567461 cites W2127970560 @default.
- W4286567461 cites W2142869398 @default.
- W4286567461 cites W2180721559 @default.
- W4286567461 cites W2281420995 @default.
- W4286567461 cites W2515728551 @default.
- W4286567461 cites W2577716227 @default.
- W4286567461 cites W2751793244 @default.
- W4286567461 cites W2751868756 @default.
- W4286567461 cites W2752362131 @default.
- W4286567461 cites W2788235048 @default.
- W4286567461 cites W2798966390 @default.
- W4286567461 cites W2804660693 @default.
- W4286567461 cites W2809476703 @default.
- W4286567461 cites W2895401011 @default.
- W4286567461 cites W2903981179 @default.
- W4286567461 cites W2924988155 @default.
- W4286567461 cites W2950720493 @default.
- W4286567461 cites W2951288507 @default.
- W4286567461 cites W2951307134 @default.
- W4286567461 cites W2997128522 @default.
- W4286567461 cites W3012655778 @default.
- W4286567461 cites W3033625896 @default.
- W4286567461 cites W3094623992 @default.
- W4286567461 cites W3125491592 @default.
- W4286567461 cites W3163083951 @default.
- W4286567461 cites W4221123688 @default.
- W4286567461 cites W50740790 @default.
- W4286567461 doi "https://doi.org/10.1016/j.eswa.2022.118175" @default.
- W4286567461 hasPublicationYear "2022" @default.
- W4286567461 type Work @default.
- W4286567461 citedByCount "0" @default.
- W4286567461 crossrefType "journal-article" @default.
- W4286567461 hasAuthorship W4286567461A5002025003 @default.
- W4286567461 hasAuthorship W4286567461A5003396109 @default.
- W4286567461 hasAuthorship W4286567461A5010425065 @default.
- W4286567461 hasAuthorship W4286567461A5063672573 @default.
- W4286567461 hasConcept C119857082 @default.
- W4286567461 hasConcept C124101348 @default.
- W4286567461 hasConcept C138885662 @default.
- W4286567461 hasConcept C153180895 @default.
- W4286567461 hasConcept C154945302 @default.
- W4286567461 hasConcept C17137986 @default.
- W4286567461 hasConcept C23123220 @default.
- W4286567461 hasConcept C2524010 @default.
- W4286567461 hasConcept C2776036281 @default.
- W4286567461 hasConcept C2776401178 @default.
- W4286567461 hasConcept C33923547 @default.
- W4286567461 hasConcept C41008148 @default.
- W4286567461 hasConcept C41895202 @default.
- W4286567461 hasConceptScore W4286567461C119857082 @default.
- W4286567461 hasConceptScore W4286567461C124101348 @default.
- W4286567461 hasConceptScore W4286567461C138885662 @default.
- W4286567461 hasConceptScore W4286567461C153180895 @default.
- W4286567461 hasConceptScore W4286567461C154945302 @default.
- W4286567461 hasConceptScore W4286567461C17137986 @default.
- W4286567461 hasConceptScore W4286567461C23123220 @default.
- W4286567461 hasConceptScore W4286567461C2524010 @default.
- W4286567461 hasConceptScore W4286567461C2776036281 @default.
- W4286567461 hasConceptScore W4286567461C2776401178 @default.
- W4286567461 hasConceptScore W4286567461C33923547 @default.
- W4286567461 hasConceptScore W4286567461C41008148 @default.
- W4286567461 hasConceptScore W4286567461C41895202 @default.
- W4286567461 hasLocation W42865674611 @default.
- W4286567461 hasOpenAccess W4286567461 @default.
- W4286567461 hasPrimaryLocation W42865674611 @default.
- W4286567461 hasRelatedWork W2016461833 @default.
- W4286567461 hasRelatedWork W2052253960 @default.
- W4286567461 hasRelatedWork W2147802381 @default.
- W4286567461 hasRelatedWork W2382607599 @default.
- W4286567461 hasRelatedWork W2546942002 @default.
- W4286567461 hasRelatedWork W2554403468 @default.
- W4286567461 hasRelatedWork W2760085659 @default.
- W4286567461 hasRelatedWork W2929240682 @default.
- W4286567461 hasRelatedWork W3197541072 @default.
- W4286567461 hasRelatedWork W4286567461 @default.
- W4286567461 hasVolume "208" @default.
- W4286567461 isParatext "false" @default.
- W4286567461 isRetracted "false" @default.
- W4286567461 workType "article" @default.