Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286572030> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4286572030 abstract "Unforeseen failures of industrial assets may lead to unexpected downtime with a huge impact on critical business processes. Therefore, modern assets usually include several embedded sensors and processing units, allowing to monitor certain operational parameters, i.e., Condition Monitoring. The sensed data can be later analyzed using Machine Learning (ML) approaches to detect anomalies and anticipate failures. Furthermore, the Internet of Things can provide the tools to extend Condition Monitoring to legacy assets that do not have onboard sensing capabilities. In general, these IoT devices offer the opportunity to move ML processing closer to the monitored asset, thus reducing costs and simplifying the anomaly detection system. However, extreme industrial environments present harsh operating conditions and limited resources, further exacerbated by the reduced computation capabilities of most IoT devices. This paper proposes an ML-based anomaly detection system that uses a retrofitting kit based on a constrained and cost-effective IoT device. Despite its limited resources, the latter executes a state-of-the-art unsupervised anomaly detection algorithm locally, autonomously learning the normality behavior of the monitored asset. Furthermore, to improve the transparency of the monitoring process, we propose to leverage blockchain technology as a non-repudiable repository of information, also assessing the impact of such implementation choice in terms of costs and overhead." @default.
- W4286572030 created "2022-07-22" @default.
- W4286572030 creator A5027706529 @default.
- W4286572030 creator A5044155942 @default.
- W4286572030 creator A5072435713 @default.
- W4286572030 creator A5073870729 @default.
- W4286572030 date "2022-06-07" @default.
- W4286572030 modified "2023-10-03" @default.
- W4286572030 title "A TinyML approach to non-repudiable anomaly detection in extreme industrial environments" @default.
- W4286572030 cites W2296719434 @default.
- W4286572030 cites W2606084320 @default.
- W4286572030 cites W2898468067 @default.
- W4286572030 cites W2994001460 @default.
- W4286572030 cites W2998789622 @default.
- W4286572030 cites W3044495145 @default.
- W4286572030 cites W3067862503 @default.
- W4286572030 cites W3099878876 @default.
- W4286572030 cites W3103145119 @default.
- W4286572030 cites W3110142540 @default.
- W4286572030 cites W3186677043 @default.
- W4286572030 cites W3213478591 @default.
- W4286572030 doi "https://doi.org/10.1109/metroind4.0iot54413.2022.9831517" @default.
- W4286572030 hasPublicationYear "2022" @default.
- W4286572030 type Work @default.
- W4286572030 citedByCount "4" @default.
- W4286572030 countsByYear W42865720302022 @default.
- W4286572030 countsByYear W42865720302023 @default.
- W4286572030 crossrefType "proceedings-article" @default.
- W4286572030 hasAuthorship W4286572030A5027706529 @default.
- W4286572030 hasAuthorship W4286572030A5044155942 @default.
- W4286572030 hasAuthorship W4286572030A5072435713 @default.
- W4286572030 hasAuthorship W4286572030A5073870729 @default.
- W4286572030 hasConcept C111919701 @default.
- W4286572030 hasConcept C120314980 @default.
- W4286572030 hasConcept C124101348 @default.
- W4286572030 hasConcept C153083717 @default.
- W4286572030 hasConcept C154945302 @default.
- W4286572030 hasConcept C180591934 @default.
- W4286572030 hasConcept C2779960059 @default.
- W4286572030 hasConcept C38652104 @default.
- W4286572030 hasConcept C41008148 @default.
- W4286572030 hasConcept C739882 @default.
- W4286572030 hasConcept C76178495 @default.
- W4286572030 hasConcept C79403827 @default.
- W4286572030 hasConceptScore W4286572030C111919701 @default.
- W4286572030 hasConceptScore W4286572030C120314980 @default.
- W4286572030 hasConceptScore W4286572030C124101348 @default.
- W4286572030 hasConceptScore W4286572030C153083717 @default.
- W4286572030 hasConceptScore W4286572030C154945302 @default.
- W4286572030 hasConceptScore W4286572030C180591934 @default.
- W4286572030 hasConceptScore W4286572030C2779960059 @default.
- W4286572030 hasConceptScore W4286572030C38652104 @default.
- W4286572030 hasConceptScore W4286572030C41008148 @default.
- W4286572030 hasConceptScore W4286572030C739882 @default.
- W4286572030 hasConceptScore W4286572030C76178495 @default.
- W4286572030 hasConceptScore W4286572030C79403827 @default.
- W4286572030 hasFunder F4320320300 @default.
- W4286572030 hasLocation W42865720301 @default.
- W4286572030 hasOpenAccess W4286572030 @default.
- W4286572030 hasPrimaryLocation W42865720301 @default.
- W4286572030 hasRelatedWork W1485627940 @default.
- W4286572030 hasRelatedWork W1596201972 @default.
- W4286572030 hasRelatedWork W2028024605 @default.
- W4286572030 hasRelatedWork W2092071486 @default.
- W4286572030 hasRelatedWork W2160425906 @default.
- W4286572030 hasRelatedWork W2391167130 @default.
- W4286572030 hasRelatedWork W2767525681 @default.
- W4286572030 hasRelatedWork W2968885912 @default.
- W4286572030 hasRelatedWork W4283067488 @default.
- W4286572030 hasRelatedWork W2460246254 @default.
- W4286572030 isParatext "false" @default.
- W4286572030 isRetracted "false" @default.
- W4286572030 workType "article" @default.