Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286572032> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4286572032 abstract "Anesthetics are commonly employed during surgical processes to dull out sensations. Despite their widespread adoption and effectiveness, there continue to be shortcomings associated with their use that span cognitive and neurological side effects. An avenue towards minimizing these side effects involves better means of monitoring the depth of anesthesia (DoA) administered during the sedation process. As part of strides towards investigating this problem, this work involved using EEG brain waves acquired from the frontal cortex region during surgery to predict DoA. Specifically, we employed a signal decomposition pre-processing technique, followed by a feature selection process to obtain an optimal feature set used for modelling linear and nonlinear regression-based algorithms for prediction tasks. The obtained results showed a range of prediction accuracies across the various patients, and the proposed approach produced the highest classification accuracy when predicting the awake state-a feat which is also echoed across the literature." @default.
- W4286572032 created "2022-07-22" @default.
- W4286572032 creator A5018024166 @default.
- W4286572032 creator A5019162682 @default.
- W4286572032 creator A5026093225 @default.
- W4286572032 creator A5066702915 @default.
- W4286572032 date "2022-06-07" @default.
- W4286572032 modified "2023-10-16" @default.
- W4286572032 title "On the Application of Parsimonious Models for Surgical Anesthesia Depth Prediction using EEG Recordings" @default.
- W4286572032 cites W1500895378 @default.
- W4286572032 cites W1988881714 @default.
- W4286572032 cites W2085318410 @default.
- W4286572032 cites W2159292941 @default.
- W4286572032 cites W2316206413 @default.
- W4286572032 cites W2559148173 @default.
- W4286572032 cites W2754649950 @default.
- W4286572032 cites W2791495114 @default.
- W4286572032 cites W2803756686 @default.
- W4286572032 cites W2946909483 @default.
- W4286572032 cites W3037102754 @default.
- W4286572032 cites W3136821121 @default.
- W4286572032 cites W3153065345 @default.
- W4286572032 cites W3167440003 @default.
- W4286572032 cites W4200383346 @default.
- W4286572032 cites W4286572024 @default.
- W4286572032 doi "https://doi.org/10.1109/metroind4.0iot54413.2022.9831706" @default.
- W4286572032 hasPublicationYear "2022" @default.
- W4286572032 type Work @default.
- W4286572032 citedByCount "0" @default.
- W4286572032 crossrefType "proceedings-article" @default.
- W4286572032 hasAuthorship W4286572032A5018024166 @default.
- W4286572032 hasAuthorship W4286572032A5019162682 @default.
- W4286572032 hasAuthorship W4286572032A5026093225 @default.
- W4286572032 hasAuthorship W4286572032A5066702915 @default.
- W4286572032 hasConcept C119857082 @default.
- W4286572032 hasConcept C127413603 @default.
- W4286572032 hasConcept C138885662 @default.
- W4286572032 hasConcept C146978453 @default.
- W4286572032 hasConcept C148483581 @default.
- W4286572032 hasConcept C153180895 @default.
- W4286572032 hasConcept C154945302 @default.
- W4286572032 hasConcept C15744967 @default.
- W4286572032 hasConcept C169760540 @default.
- W4286572032 hasConcept C177264268 @default.
- W4286572032 hasConcept C199360897 @default.
- W4286572032 hasConcept C204323151 @default.
- W4286572032 hasConcept C2776401178 @default.
- W4286572032 hasConcept C2776814716 @default.
- W4286572032 hasConcept C41008148 @default.
- W4286572032 hasConcept C41895202 @default.
- W4286572032 hasConcept C42219234 @default.
- W4286572032 hasConcept C522805319 @default.
- W4286572032 hasConcept C71924100 @default.
- W4286572032 hasConcept C81917197 @default.
- W4286572032 hasConceptScore W4286572032C119857082 @default.
- W4286572032 hasConceptScore W4286572032C127413603 @default.
- W4286572032 hasConceptScore W4286572032C138885662 @default.
- W4286572032 hasConceptScore W4286572032C146978453 @default.
- W4286572032 hasConceptScore W4286572032C148483581 @default.
- W4286572032 hasConceptScore W4286572032C153180895 @default.
- W4286572032 hasConceptScore W4286572032C154945302 @default.
- W4286572032 hasConceptScore W4286572032C15744967 @default.
- W4286572032 hasConceptScore W4286572032C169760540 @default.
- W4286572032 hasConceptScore W4286572032C177264268 @default.
- W4286572032 hasConceptScore W4286572032C199360897 @default.
- W4286572032 hasConceptScore W4286572032C204323151 @default.
- W4286572032 hasConceptScore W4286572032C2776401178 @default.
- W4286572032 hasConceptScore W4286572032C2776814716 @default.
- W4286572032 hasConceptScore W4286572032C41008148 @default.
- W4286572032 hasConceptScore W4286572032C41895202 @default.
- W4286572032 hasConceptScore W4286572032C42219234 @default.
- W4286572032 hasConceptScore W4286572032C522805319 @default.
- W4286572032 hasConceptScore W4286572032C71924100 @default.
- W4286572032 hasConceptScore W4286572032C81917197 @default.
- W4286572032 hasFunder F4320321001 @default.
- W4286572032 hasLocation W42865720321 @default.
- W4286572032 hasOpenAccess W4286572032 @default.
- W4286572032 hasPrimaryLocation W42865720321 @default.
- W4286572032 hasRelatedWork W2374344280 @default.
- W4286572032 hasRelatedWork W2546942002 @default.
- W4286572032 hasRelatedWork W3174196512 @default.
- W4286572032 hasRelatedWork W3200179079 @default.
- W4286572032 hasRelatedWork W3210877509 @default.
- W4286572032 hasRelatedWork W4212852473 @default.
- W4286572032 hasRelatedWork W4225360065 @default.
- W4286572032 hasRelatedWork W4293525103 @default.
- W4286572032 hasRelatedWork W4307883119 @default.
- W4286572032 hasRelatedWork W2345184372 @default.
- W4286572032 isParatext "false" @default.
- W4286572032 isRetracted "false" @default.
- W4286572032 workType "article" @default.