Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286572050> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4286572050 abstract "Ultra Reliable Low Latency Communications (URLLC) scenarios require very low latency and high reliability, imposing an optimization of every aspect of 5G data processing, transmission, and networking. Artificial Intelligence (AI)-based tools can be helpful resources in this context, enhancing multiple functionalities, from network resource allocation to network security. In this paper we propose a solution placed at the next generation eNB (gNB)-Central Unit (CU) level, relying on Neural Networks (NNs), capable of classifying incoming packets. The developed system increases the security of 5G and B5G architectures, protecting the 5G Core (5GC) from potential attacks. To comply with URLLC requirements on latency, we present an architecture leveraging photonic hardware to speed-up NN computations. The proposed solution, namely Photonic-Aware Neural Network (PANN), complies with physical layer constraints raised by photonic analog computing and can achieve high throughput and time-of-flight latency. The classification performance of the devised PANN model has been assessed through simulation on the distilled Kitsune dataset, suited for 5G scenarios. The experiments proved that PANN significantly lowers the chance of transmitting malicious packets to the 5GC with a classification performance increasing with the bit resolution supported by the analog photonic physical layer." @default.
- W4286572050 created "2022-07-22" @default.
- W4286572050 creator A5016101884 @default.
- W4286572050 creator A5024138045 @default.
- W4286572050 creator A5042358597 @default.
- W4286572050 creator A5046281223 @default.
- W4286572050 creator A5066928855 @default.
- W4286572050 creator A5072597020 @default.
- W4286572050 date "2022-06-06" @default.
- W4286572050 modified "2023-09-26" @default.
- W4286572050 title "Photonic-aware Neural Networks for Packet Classification in URLLC scenarios" @default.
- W4286572050 cites W2137820733 @default.
- W4286572050 cites W2148143831 @default.
- W4286572050 cites W2783156170 @default.
- W4286572050 cites W2956998290 @default.
- W4286572050 cites W2963197901 @default.
- W4286572050 cites W2989734355 @default.
- W4286572050 cites W2997129125 @default.
- W4286572050 cites W3006951342 @default.
- W4286572050 cites W3034315788 @default.
- W4286572050 cites W3128451613 @default.
- W4286572050 cites W3130916947 @default.
- W4286572050 cites W3134578582 @default.
- W4286572050 cites W3154054673 @default.
- W4286572050 cites W3180565565 @default.
- W4286572050 cites W3194602669 @default.
- W4286572050 cites W3217332116 @default.
- W4286572050 cites W4250664506 @default.
- W4286572050 doi "https://doi.org/10.1109/hpsr54439.2022.9831251" @default.
- W4286572050 hasPublicationYear "2022" @default.
- W4286572050 type Work @default.
- W4286572050 citedByCount "0" @default.
- W4286572050 crossrefType "proceedings-article" @default.
- W4286572050 hasAuthorship W4286572050A5016101884 @default.
- W4286572050 hasAuthorship W4286572050A5024138045 @default.
- W4286572050 hasAuthorship W4286572050A5042358597 @default.
- W4286572050 hasAuthorship W4286572050A5046281223 @default.
- W4286572050 hasAuthorship W4286572050A5066928855 @default.
- W4286572050 hasAuthorship W4286572050A5072597020 @default.
- W4286572050 hasConcept C118524514 @default.
- W4286572050 hasConcept C120314980 @default.
- W4286572050 hasConcept C120665830 @default.
- W4286572050 hasConcept C121332964 @default.
- W4286572050 hasConcept C151730666 @default.
- W4286572050 hasConcept C154945302 @default.
- W4286572050 hasConcept C157764524 @default.
- W4286572050 hasConcept C158379750 @default.
- W4286572050 hasConcept C20788544 @default.
- W4286572050 hasConcept C2779343474 @default.
- W4286572050 hasConcept C31258907 @default.
- W4286572050 hasConcept C41008148 @default.
- W4286572050 hasConcept C50644808 @default.
- W4286572050 hasConcept C555944384 @default.
- W4286572050 hasConcept C76155785 @default.
- W4286572050 hasConcept C82876162 @default.
- W4286572050 hasConcept C86803240 @default.
- W4286572050 hasConceptScore W4286572050C118524514 @default.
- W4286572050 hasConceptScore W4286572050C120314980 @default.
- W4286572050 hasConceptScore W4286572050C120665830 @default.
- W4286572050 hasConceptScore W4286572050C121332964 @default.
- W4286572050 hasConceptScore W4286572050C151730666 @default.
- W4286572050 hasConceptScore W4286572050C154945302 @default.
- W4286572050 hasConceptScore W4286572050C157764524 @default.
- W4286572050 hasConceptScore W4286572050C158379750 @default.
- W4286572050 hasConceptScore W4286572050C20788544 @default.
- W4286572050 hasConceptScore W4286572050C2779343474 @default.
- W4286572050 hasConceptScore W4286572050C31258907 @default.
- W4286572050 hasConceptScore W4286572050C41008148 @default.
- W4286572050 hasConceptScore W4286572050C50644808 @default.
- W4286572050 hasConceptScore W4286572050C555944384 @default.
- W4286572050 hasConceptScore W4286572050C76155785 @default.
- W4286572050 hasConceptScore W4286572050C82876162 @default.
- W4286572050 hasConceptScore W4286572050C86803240 @default.
- W4286572050 hasLocation W42865720501 @default.
- W4286572050 hasOpenAccess W4286572050 @default.
- W4286572050 hasPrimaryLocation W42865720501 @default.
- W4286572050 hasRelatedWork W1511872163 @default.
- W4286572050 hasRelatedWork W160116885 @default.
- W4286572050 hasRelatedWork W1967310952 @default.
- W4286572050 hasRelatedWork W2014357397 @default.
- W4286572050 hasRelatedWork W2059725834 @default.
- W4286572050 hasRelatedWork W2106887536 @default.
- W4286572050 hasRelatedWork W2120159247 @default.
- W4286572050 hasRelatedWork W2159903768 @default.
- W4286572050 hasRelatedWork W2625512991 @default.
- W4286572050 hasRelatedWork W2245897568 @default.
- W4286572050 isParatext "false" @default.
- W4286572050 isRetracted "false" @default.
- W4286572050 workType "article" @default.