Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286579594> ?p ?o ?g. }
- W4286579594 endingPage "6098" @default.
- W4286579594 startingPage "6086" @default.
- W4286579594 abstract "In this article, an effectively variational pansharpening method with spectral gradient fidelity and spatial Hessian hyper-Laplacian sparsity constraints (PSGFSHHS) was proposed to fuse the low resolution multispectral (LRMS) and panchromatic (Pan) images to the high resolution multispectral (HRMS) image. First, the spectral feature correlation prior between LRMS and HRMS was modeled by the spectral gradient fidelity constraint. Second, the spatial correlation prior between Pan and HRMS was particularly modeled by the spatial Hessian hyper-Laplacian sparsity constraint from the statistical perspective, which clearly held strong novelty for pansharpening recently by the spatial Hessian hyper-Laplacian sparsity modeling. Third, by combining the spectral gradient fidelity constraint and the spatial Hessian hyper-Laplacian sparsity constraint, the PSGFSHHS model was formed and the alternating direction method of multipliers method was utilized for optimization. Finally, the experimental fusion examples clearly illustrated the effectiveness and capability of PSGFSHHS." @default.
- W4286579594 created "2022-07-22" @default.
- W4286579594 creator A5060572377 @default.
- W4286579594 creator A5076360288 @default.
- W4286579594 date "2022-01-01" @default.
- W4286579594 modified "2023-09-27" @default.
- W4286579594 title "Spectral Gradient Fidelity and Spatial Hessian Hyper-Laplacian Sparsity Constraints for Variational Pansharpening" @default.
- W4286579594 cites W1677409904 @default.
- W4286579594 cites W1980110630 @default.
- W4286579594 cites W1991460509 @default.
- W4286579594 cites W2007454648 @default.
- W4286579594 cites W2023911449 @default.
- W4286579594 cites W2039247168 @default.
- W4286579594 cites W2054440797 @default.
- W4286579594 cites W2055834582 @default.
- W4286579594 cites W2111854674 @default.
- W4286579594 cites W2111924917 @default.
- W4286579594 cites W2112693869 @default.
- W4286579594 cites W2114066324 @default.
- W4286579594 cites W2123046940 @default.
- W4286579594 cites W2124743705 @default.
- W4286579594 cites W2129953395 @default.
- W4286579594 cites W2163677711 @default.
- W4286579594 cites W2171108951 @default.
- W4286579594 cites W2171627515 @default.
- W4286579594 cites W2172185514 @default.
- W4286579594 cites W2198968434 @default.
- W4286579594 cites W2394774286 @default.
- W4286579594 cites W2416676033 @default.
- W4286579594 cites W2460041091 @default.
- W4286579594 cites W2462592242 @default.
- W4286579594 cites W2619662254 @default.
- W4286579594 cites W2806865914 @default.
- W4286579594 cites W2935896423 @default.
- W4286579594 cites W2947324203 @default.
- W4286579594 cites W2963129413 @default.
- W4286579594 cites W2963183385 @default.
- W4286579594 cites W3081397212 @default.
- W4286579594 cites W3095155556 @default.
- W4286579594 cites W3096904276 @default.
- W4286579594 cites W3097824737 @default.
- W4286579594 cites W3098542449 @default.
- W4286579594 cites W3102253068 @default.
- W4286579594 cites W3128546730 @default.
- W4286579594 cites W3150135133 @default.
- W4286579594 cites W3160989967 @default.
- W4286579594 cites W3217482982 @default.
- W4286579594 doi "https://doi.org/10.1109/jstars.2022.3193182" @default.
- W4286579594 hasPublicationYear "2022" @default.
- W4286579594 type Work @default.
- W4286579594 citedByCount "0" @default.
- W4286579594 crossrefType "journal-article" @default.
- W4286579594 hasAuthorship W4286579594A5060572377 @default.
- W4286579594 hasAuthorship W4286579594A5076360288 @default.
- W4286579594 hasConcept C107445234 @default.
- W4286579594 hasConcept C11413529 @default.
- W4286579594 hasConcept C134306372 @default.
- W4286579594 hasConcept C153180895 @default.
- W4286579594 hasConcept C154945302 @default.
- W4286579594 hasConcept C165700671 @default.
- W4286579594 hasConcept C173163844 @default.
- W4286579594 hasConcept C203616005 @default.
- W4286579594 hasConcept C205372480 @default.
- W4286579594 hasConcept C2524010 @default.
- W4286579594 hasConcept C2776036281 @default.
- W4286579594 hasConcept C28826006 @default.
- W4286579594 hasConcept C33923547 @default.
- W4286579594 hasConcept C41008148 @default.
- W4286579594 hasConceptScore W4286579594C107445234 @default.
- W4286579594 hasConceptScore W4286579594C11413529 @default.
- W4286579594 hasConceptScore W4286579594C134306372 @default.
- W4286579594 hasConceptScore W4286579594C153180895 @default.
- W4286579594 hasConceptScore W4286579594C154945302 @default.
- W4286579594 hasConceptScore W4286579594C165700671 @default.
- W4286579594 hasConceptScore W4286579594C173163844 @default.
- W4286579594 hasConceptScore W4286579594C203616005 @default.
- W4286579594 hasConceptScore W4286579594C205372480 @default.
- W4286579594 hasConceptScore W4286579594C2524010 @default.
- W4286579594 hasConceptScore W4286579594C2776036281 @default.
- W4286579594 hasConceptScore W4286579594C28826006 @default.
- W4286579594 hasConceptScore W4286579594C33923547 @default.
- W4286579594 hasConceptScore W4286579594C41008148 @default.
- W4286579594 hasFunder F4320321001 @default.
- W4286579594 hasFunder F4320321543 @default.
- W4286579594 hasLocation W42865795941 @default.
- W4286579594 hasLocation W42865795942 @default.
- W4286579594 hasOpenAccess W4286579594 @default.
- W4286579594 hasPrimaryLocation W42865795941 @default.
- W4286579594 hasRelatedWork W1980110630 @default.
- W4286579594 hasRelatedWork W2011962637 @default.
- W4286579594 hasRelatedWork W2163677711 @default.
- W4286579594 hasRelatedWork W2292145567 @default.
- W4286579594 hasRelatedWork W2375230202 @default.
- W4286579594 hasRelatedWork W2375311607 @default.
- W4286579594 hasRelatedWork W3126924427 @default.
- W4286579594 hasRelatedWork W3192816080 @default.
- W4286579594 hasRelatedWork W4312932714 @default.
- W4286579594 hasRelatedWork W54727263 @default.