Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286579690> ?p ?o ?g. }
- W4286579690 endingPage "6052" @default.
- W4286579690 startingPage "6046" @default.
- W4286579690 abstract "The signal-to-noise ratio (SNR) is important observations in global navigation satellite system-reflectometry (GNSS-R) technology. The oscillation frequency in the SNR arc is sensitive to different reflecting surfaces and can be used to build height model to track the variation of snow depth. However, it is difficult to obtain retrieval results with snow depth of zero in the actual snow depth retrieval experiments based on GNSS-R technology, which indicates that the classical model has nonnegligible retrieval errors in the snow-free state. This study aims to realize the detection of ground truth information before snow depth retrieval, i.e., classification of snow-free state and snow-covered state. Machine learning was introduced to achieve the aforementioned purpose and the SNR arc was used as the input data. Compared with the current mainstream topography correction algorithms, the algorithm proposed in this study does not rely on any priori ground measured data and has theoretical universality. The detection results can constrain the retrieval snow depth in the snow-free state and, thus, improve the retrieval accuracy. The experimental results for the 2014 seasonal snowpack at P351 station in Idaho, USA, show that the detection results obtained based on support vector machines agree well with the measured snow depth provided by the SNOTEL network, and the overall detection accuracy can reach about 96%. The daily snowpack state is determined by the majority of SNR arcs detected during the day and is only considered reliable if the percentage exceeds 75%. Only one day of the detection results was inaccurate and only 8 days (8/365) did not reach the set threshold of 75%. With the help of the detection results, the root-mean-square error of snow depth retrieval can be reduced from 20 cm in the classical algorithm to 15 cm, which results in a 25% improvement in retrieval accuracy. Moreover, this study broadens the application value of GNSS signals and provides a reference for the application of SNR in the detection field." @default.
- W4286579690 created "2022-07-22" @default.
- W4286579690 creator A5009097237 @default.
- W4286579690 creator A5021587155 @default.
- W4286579690 creator A5035533740 @default.
- W4286579690 creator A5038052016 @default.
- W4286579690 creator A5046538240 @default.
- W4286579690 creator A5052946868 @default.
- W4286579690 date "2022-01-01" @default.
- W4286579690 modified "2023-09-29" @default.
- W4286579690 title "An SVM-Based Snow Detection Algorithm for GNSS-R Snow Depth Retrievals" @default.
- W4286579690 cites W1580547381 @default.
- W4286579690 cites W1974618482 @default.
- W4286579690 cites W1986316936 @default.
- W4286579690 cites W1987288027 @default.
- W4286579690 cites W2015414779 @default.
- W4286579690 cites W2019523159 @default.
- W4286579690 cites W2054539972 @default.
- W4286579690 cites W2055375015 @default.
- W4286579690 cites W2072211848 @default.
- W4286579690 cites W2101293653 @default.
- W4286579690 cites W2106354542 @default.
- W4286579690 cites W2111730379 @default.
- W4286579690 cites W2113454568 @default.
- W4286579690 cites W2113760121 @default.
- W4286579690 cites W2133906924 @default.
- W4286579690 cites W2138739648 @default.
- W4286579690 cites W2238251425 @default.
- W4286579690 cites W2344797062 @default.
- W4286579690 cites W2405881380 @default.
- W4286579690 cites W2566986569 @default.
- W4286579690 cites W2573739355 @default.
- W4286579690 cites W2585958134 @default.
- W4286579690 cites W2604838002 @default.
- W4286579690 cites W2973464717 @default.
- W4286579690 cites W3110809172 @default.
- W4286579690 cites W3132363090 @default.
- W4286579690 cites W3196006465 @default.
- W4286579690 cites W3205100266 @default.
- W4286579690 cites W4206913733 @default.
- W4286579690 doi "https://doi.org/10.1109/jstars.2022.3193113" @default.
- W4286579690 hasPublicationYear "2022" @default.
- W4286579690 type Work @default.
- W4286579690 citedByCount "4" @default.
- W4286579690 countsByYear W42865796902022 @default.
- W4286579690 countsByYear W42865796902023 @default.
- W4286579690 crossrefType "journal-article" @default.
- W4286579690 hasAuthorship W4286579690A5009097237 @default.
- W4286579690 hasAuthorship W4286579690A5021587155 @default.
- W4286579690 hasAuthorship W4286579690A5035533740 @default.
- W4286579690 hasAuthorship W4286579690A5038052016 @default.
- W4286579690 hasAuthorship W4286579690A5046538240 @default.
- W4286579690 hasAuthorship W4286579690A5052946868 @default.
- W4286579690 hasBestOaLocation W42865796902 @default.
- W4286579690 hasConcept C11413529 @default.
- W4286579690 hasConcept C127313418 @default.
- W4286579690 hasConcept C14279187 @default.
- W4286579690 hasConcept C146849305 @default.
- W4286579690 hasConcept C153294291 @default.
- W4286579690 hasConcept C154945302 @default.
- W4286579690 hasConcept C197046000 @default.
- W4286579690 hasConcept C205649164 @default.
- W4286579690 hasConcept C2778877292 @default.
- W4286579690 hasConcept C39432304 @default.
- W4286579690 hasConcept C41008148 @default.
- W4286579690 hasConcept C60229501 @default.
- W4286579690 hasConcept C62649853 @default.
- W4286579690 hasConcept C76155785 @default.
- W4286579690 hasConceptScore W4286579690C11413529 @default.
- W4286579690 hasConceptScore W4286579690C127313418 @default.
- W4286579690 hasConceptScore W4286579690C14279187 @default.
- W4286579690 hasConceptScore W4286579690C146849305 @default.
- W4286579690 hasConceptScore W4286579690C153294291 @default.
- W4286579690 hasConceptScore W4286579690C154945302 @default.
- W4286579690 hasConceptScore W4286579690C197046000 @default.
- W4286579690 hasConceptScore W4286579690C205649164 @default.
- W4286579690 hasConceptScore W4286579690C2778877292 @default.
- W4286579690 hasConceptScore W4286579690C39432304 @default.
- W4286579690 hasConceptScore W4286579690C41008148 @default.
- W4286579690 hasConceptScore W4286579690C60229501 @default.
- W4286579690 hasConceptScore W4286579690C62649853 @default.
- W4286579690 hasConceptScore W4286579690C76155785 @default.
- W4286579690 hasFunder F4320309612 @default.
- W4286579690 hasFunder F4320321001 @default.
- W4286579690 hasLocation W42865796901 @default.
- W4286579690 hasLocation W42865796902 @default.
- W4286579690 hasLocation W42865796903 @default.
- W4286579690 hasOpenAccess W4286579690 @default.
- W4286579690 hasPrimaryLocation W42865796901 @default.
- W4286579690 hasRelatedWork W2131373907 @default.
- W4286579690 hasRelatedWork W2135049428 @default.
- W4286579690 hasRelatedWork W2146809780 @default.
- W4286579690 hasRelatedWork W2547306028 @default.
- W4286579690 hasRelatedWork W3084158843 @default.
- W4286579690 hasRelatedWork W3173737780 @default.
- W4286579690 hasRelatedWork W3198181924 @default.
- W4286579690 hasRelatedWork W4205695541 @default.
- W4286579690 hasRelatedWork W4225642250 @default.