Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286587332> ?p ?o ?g. }
- W4286587332 abstract "Abstract Transportation networks play a critical role in human mobility and the exchange of goods, but they are also the primary vehicles for the worldwide spread of infections, and account for a significant fraction of C O 2 emissions. We investigate the edge removal dynamics of two mature but fast-changing transportation networks: the Brazilian domestic bus transportation network and the U.S. domestic air transportation network. We use machine learning approaches to predict edge removal on a monthly time scale and find that models trained on data for a given month predict edge removals for the same month with high accuracy. For the air transportation network, we also find that models trained for a given month are still accurate for other months even in the presence of external shocks. We take advantage of this approach to forecast the impact of a hypothetical dramatic reduction in the scale of the U.S. air transportation network as a result of policies to reduce C O 2 emissions. Our forecasting approach could be helpful in building scenarios for planning future infrastructure." @default.
- W4286587332 created "2022-07-22" @default.
- W4286587332 creator A5004192983 @default.
- W4286587332 creator A5073544378 @default.
- W4286587332 creator A5076035091 @default.
- W4286587332 date "2022-07-22" @default.
- W4286587332 modified "2023-10-12" @default.
- W4286587332 title "Forecasting the evolution of fast-changing transportation networks using machine learning" @default.
- W4286587332 cites W1878853999 @default.
- W4286587332 cites W1968164782 @default.
- W4286587332 cites W1979104937 @default.
- W4286587332 cites W2007444087 @default.
- W4286587332 cites W2011401040 @default.
- W4286587332 cites W2021046139 @default.
- W4286587332 cites W2030057604 @default.
- W4286587332 cites W2043890595 @default.
- W4286587332 cites W2070207525 @default.
- W4286587332 cites W2080243455 @default.
- W4286587332 cites W2093333368 @default.
- W4286587332 cites W2130476447 @default.
- W4286587332 cites W2142281120 @default.
- W4286587332 cites W2269982636 @default.
- W4286587332 cites W2760942449 @default.
- W4286587332 cites W2760985819 @default.
- W4286587332 cites W2782195772 @default.
- W4286587332 cites W2892741787 @default.
- W4286587332 cites W2943765333 @default.
- W4286587332 cites W2965829935 @default.
- W4286587332 cites W2969194307 @default.
- W4286587332 cites W2981599999 @default.
- W4286587332 cites W2999615587 @default.
- W4286587332 cites W3010131837 @default.
- W4286587332 cites W3014866318 @default.
- W4286587332 cites W3026582775 @default.
- W4286587332 cites W3029956844 @default.
- W4286587332 cites W3037819556 @default.
- W4286587332 cites W3043119625 @default.
- W4286587332 cites W3092055951 @default.
- W4286587332 cites W3098144747 @default.
- W4286587332 cites W3098922039 @default.
- W4286587332 cites W3100666529 @default.
- W4286587332 cites W3102476541 @default.
- W4286587332 cites W3105761396 @default.
- W4286587332 doi "https://doi.org/10.1038/s41467-022-31911-2" @default.
- W4286587332 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35869068" @default.
- W4286587332 hasPublicationYear "2022" @default.
- W4286587332 type Work @default.
- W4286587332 citedByCount "3" @default.
- W4286587332 countsByYear W42865873322023 @default.
- W4286587332 crossrefType "journal-article" @default.
- W4286587332 hasAuthorship W4286587332A5004192983 @default.
- W4286587332 hasAuthorship W4286587332A5073544378 @default.
- W4286587332 hasAuthorship W4286587332A5076035091 @default.
- W4286587332 hasBestOaLocation W42865873321 @default.
- W4286587332 hasConcept C111368507 @default.
- W4286587332 hasConcept C114809511 @default.
- W4286587332 hasConcept C126255220 @default.
- W4286587332 hasConcept C12725497 @default.
- W4286587332 hasConcept C127313418 @default.
- W4286587332 hasConcept C127413603 @default.
- W4286587332 hasConcept C149629883 @default.
- W4286587332 hasConcept C154945302 @default.
- W4286587332 hasConcept C162307627 @default.
- W4286587332 hasConcept C178790620 @default.
- W4286587332 hasConcept C185592680 @default.
- W4286587332 hasConcept C205649164 @default.
- W4286587332 hasConcept C22212356 @default.
- W4286587332 hasConcept C2778755073 @default.
- W4286587332 hasConcept C2989357034 @default.
- W4286587332 hasConcept C33923547 @default.
- W4286587332 hasConcept C39118121 @default.
- W4286587332 hasConcept C41008148 @default.
- W4286587332 hasConcept C42475967 @default.
- W4286587332 hasConcept C58640448 @default.
- W4286587332 hasConceptScore W4286587332C111368507 @default.
- W4286587332 hasConceptScore W4286587332C114809511 @default.
- W4286587332 hasConceptScore W4286587332C126255220 @default.
- W4286587332 hasConceptScore W4286587332C12725497 @default.
- W4286587332 hasConceptScore W4286587332C127313418 @default.
- W4286587332 hasConceptScore W4286587332C127413603 @default.
- W4286587332 hasConceptScore W4286587332C149629883 @default.
- W4286587332 hasConceptScore W4286587332C154945302 @default.
- W4286587332 hasConceptScore W4286587332C162307627 @default.
- W4286587332 hasConceptScore W4286587332C178790620 @default.
- W4286587332 hasConceptScore W4286587332C185592680 @default.
- W4286587332 hasConceptScore W4286587332C205649164 @default.
- W4286587332 hasConceptScore W4286587332C22212356 @default.
- W4286587332 hasConceptScore W4286587332C2778755073 @default.
- W4286587332 hasConceptScore W4286587332C2989357034 @default.
- W4286587332 hasConceptScore W4286587332C33923547 @default.
- W4286587332 hasConceptScore W4286587332C39118121 @default.
- W4286587332 hasConceptScore W4286587332C41008148 @default.
- W4286587332 hasConceptScore W4286587332C42475967 @default.
- W4286587332 hasConceptScore W4286587332C58640448 @default.
- W4286587332 hasIssue "1" @default.
- W4286587332 hasLocation W42865873321 @default.
- W4286587332 hasLocation W42865873322 @default.
- W4286587332 hasLocation W42865873323 @default.
- W4286587332 hasOpenAccess W4286587332 @default.
- W4286587332 hasPrimaryLocation W42865873321 @default.