Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286592118> ?p ?o ?g. }
- W4286592118 abstract "Practical quantum computing will require error rates that are well below what is achievable with physical qubits. Quantum error correction offers a path to algorithmically-relevant error rates by encoding logical qubits within many physical qubits, where increasing the number of physical qubits enhances protection against physical errors. However, introducing more qubits also increases the number of error sources, so the density of errors must be sufficiently low in order for logical performance to improve with increasing code size. Here, we report the measurement of logical qubit performance scaling across multiple code sizes, and demonstrate that our system of superconducting qubits has sufficient performance to overcome the additional errors from increasing qubit number. We find our distance-5 surface code logical qubit modestly outperforms an ensemble of distance-3 logical qubits on average, both in terms of logical error probability over 25 cycles and logical error per cycle ($2.914%pm 0.016%$ compared to $3.028%pm 0.023%$). To investigate damaging, low-probability error sources, we run a distance-25 repetition code and observe a $1.7times10^{-6}$ logical error per round floor set by a single high-energy event ($1.6times10^{-7}$ when excluding this event). We are able to accurately model our experiment, and from this model we can extract error budgets that highlight the biggest challenges for future systems. These results mark the first experimental demonstration where quantum error correction begins to improve performance with increasing qubit number, illuminating the path to reaching the logical error rates required for computation." @default.
- W4286592118 created "2022-07-22" @default.
- W4286592118 creator A5000505347 @default.
- W4286592118 creator A5000559627 @default.
- W4286592118 creator A5000698242 @default.
- W4286592118 creator A5002253462 @default.
- W4286592118 creator A5003077083 @default.
- W4286592118 creator A5004055767 @default.
- W4286592118 creator A5004248032 @default.
- W4286592118 creator A5005030650 @default.
- W4286592118 creator A5005397488 @default.
- W4286592118 creator A5007353986 @default.
- W4286592118 creator A5007482178 @default.
- W4286592118 creator A5007759421 @default.
- W4286592118 creator A5008493129 @default.
- W4286592118 creator A5008885118 @default.
- W4286592118 creator A5009516582 @default.
- W4286592118 creator A5010185866 @default.
- W4286592118 creator A5010267122 @default.
- W4286592118 creator A5010640897 @default.
- W4286592118 creator A5010871812 @default.
- W4286592118 creator A5012231169 @default.
- W4286592118 creator A5012506742 @default.
- W4286592118 creator A5014090748 @default.
- W4286592118 creator A5014321658 @default.
- W4286592118 creator A5015844410 @default.
- W4286592118 creator A5016550228 @default.
- W4286592118 creator A5017296839 @default.
- W4286592118 creator A5017376512 @default.
- W4286592118 creator A5017608339 @default.
- W4286592118 creator A5017636218 @default.
- W4286592118 creator A5018573522 @default.
- W4286592118 creator A5019620317 @default.
- W4286592118 creator A5020576151 @default.
- W4286592118 creator A5020699999 @default.
- W4286592118 creator A5020941143 @default.
- W4286592118 creator A5021226061 @default.
- W4286592118 creator A5021629913 @default.
- W4286592118 creator A5021911747 @default.
- W4286592118 creator A5022797632 @default.
- W4286592118 creator A5023213398 @default.
- W4286592118 creator A5023528725 @default.
- W4286592118 creator A5024111873 @default.
- W4286592118 creator A5024889833 @default.
- W4286592118 creator A5025231663 @default.
- W4286592118 creator A5025879410 @default.
- W4286592118 creator A5026425163 @default.
- W4286592118 creator A5026725544 @default.
- W4286592118 creator A5026939567 @default.
- W4286592118 creator A5027415119 @default.
- W4286592118 creator A5027626662 @default.
- W4286592118 creator A5027759442 @default.
- W4286592118 creator A5028284921 @default.
- W4286592118 creator A5029037357 @default.
- W4286592118 creator A5031027309 @default.
- W4286592118 creator A5033665012 @default.
- W4286592118 creator A5035149121 @default.
- W4286592118 creator A5036253306 @default.
- W4286592118 creator A5036477169 @default.
- W4286592118 creator A5036734283 @default.
- W4286592118 creator A5036735411 @default.
- W4286592118 creator A5038127891 @default.
- W4286592118 creator A5039239104 @default.
- W4286592118 creator A5042184175 @default.
- W4286592118 creator A5042426014 @default.
- W4286592118 creator A5042731148 @default.
- W4286592118 creator A5044081449 @default.
- W4286592118 creator A5045073686 @default.
- W4286592118 creator A5045253258 @default.
- W4286592118 creator A5045769513 @default.
- W4286592118 creator A5046123254 @default.
- W4286592118 creator A5047982487 @default.
- W4286592118 creator A5048459317 @default.
- W4286592118 creator A5048515902 @default.
- W4286592118 creator A5049281132 @default.
- W4286592118 creator A5050009426 @default.
- W4286592118 creator A5050097929 @default.
- W4286592118 creator A5050776397 @default.
- W4286592118 creator A5050811670 @default.
- W4286592118 creator A5051197242 @default.
- W4286592118 creator A5051203133 @default.
- W4286592118 creator A5051700816 @default.
- W4286592118 creator A5051742131 @default.
- W4286592118 creator A5051838717 @default.
- W4286592118 creator A5052676364 @default.
- W4286592118 creator A5052857670 @default.
- W4286592118 creator A5052967232 @default.
- W4286592118 creator A5053221027 @default.
- W4286592118 creator A5053250307 @default.
- W4286592118 creator A5053443871 @default.
- W4286592118 creator A5055048092 @default.
- W4286592118 creator A5055304330 @default.
- W4286592118 creator A5055445003 @default.
- W4286592118 creator A5055486364 @default.
- W4286592118 creator A5055747836 @default.
- W4286592118 creator A5055936203 @default.
- W4286592118 creator A5056613045 @default.
- W4286592118 creator A5056828608 @default.
- W4286592118 creator A5057364153 @default.
- W4286592118 creator A5057418972 @default.