Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286593252> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4286593252 endingPage "917" @default.
- W4286593252 startingPage "902" @default.
- W4286593252 abstract "Social networks are the main resources to gather information about people's opinions and sentiments towards different topics as they spend hours daily on social media and share their opinions. Twitter is a platform widely used by people to express their opinions and display sentiments on different occasions. Sentiment analysis's (SA) task is to label people's opinions as different categories such as positive and negative from a given piece of text. Another task is to decide whether a given text is subjective, expressing the writer's opinions, or objective. These tasks were performed at different levels of analysis ranging from the document level to the sentence and phrase level. Another task is aspect extraction, which originated from aspect-based sentiment analysis in phrase level. All these tasks are under the umbrella of SA. In recent years, a large number of methods, techniques, and enhancements have been proposed for the problem of SA in different tasks at different levels. Sentiment analysis is an approach to analyze data and retrieve sentiment that it embodies. Twitter sentiment analysis is an application of sentiment analysis on data from Twitter (tweets) in order to extract sentiments conveyed by the user. In the past decades, the research in this field has consistently grown. The reason behind this is the challenging format of the tweets, which makes the processing difficult. The tweet format is very small, which generates a whole new dimension of problems like use of slang, abbreviations, etc. The chapter elaborately discusses three supervised machine learning algorithms—naïve Bayes, k-nearest neighbor (KNN), and decision tree—and compares their overall accuracy, precisions, as well as recall values; f-measure; number of tweets correctly classified; number of tweets incorrectly classified; and execution time." @default.
- W4286593252 created "2022-07-22" @default.
- W4286593252 creator A5064048221 @default.
- W4286593252 date "2022-06-10" @default.
- W4286593252 modified "2023-09-24" @default.
- W4286593252 title "Machine Learning in Sentiment Analysis Over Twitter" @default.
- W4286593252 cites W2015525779 @default.
- W4286593252 cites W2035716223 @default.
- W4286593252 cites W2122412231 @default.
- W4286593252 cites W2146111747 @default.
- W4286593252 cites W2156413587 @default.
- W4286593252 cites W2162125107 @default.
- W4286593252 cites W2407936315 @default.
- W4286593252 cites W2973258416 @default.
- W4286593252 cites W319996907 @default.
- W4286593252 doi "https://doi.org/10.4018/978-1-6684-6303-1.ch048" @default.
- W4286593252 hasPublicationYear "2022" @default.
- W4286593252 type Work @default.
- W4286593252 citedByCount "0" @default.
- W4286593252 crossrefType "book-chapter" @default.
- W4286593252 hasAuthorship W4286593252A5064048221 @default.
- W4286593252 hasConcept C136764020 @default.
- W4286593252 hasConcept C138885662 @default.
- W4286593252 hasConcept C143275388 @default.
- W4286593252 hasConcept C154945302 @default.
- W4286593252 hasConcept C162324750 @default.
- W4286593252 hasConcept C187736073 @default.
- W4286593252 hasConcept C202444582 @default.
- W4286593252 hasConcept C204321447 @default.
- W4286593252 hasConcept C23123220 @default.
- W4286593252 hasConcept C2522767166 @default.
- W4286593252 hasConcept C2776224158 @default.
- W4286593252 hasConcept C2777530160 @default.
- W4286593252 hasConcept C2779901982 @default.
- W4286593252 hasConcept C2780451532 @default.
- W4286593252 hasConcept C33676613 @default.
- W4286593252 hasConcept C33923547 @default.
- W4286593252 hasConcept C41008148 @default.
- W4286593252 hasConcept C41895202 @default.
- W4286593252 hasConcept C518677369 @default.
- W4286593252 hasConcept C66402592 @default.
- W4286593252 hasConcept C9652623 @default.
- W4286593252 hasConceptScore W4286593252C136764020 @default.
- W4286593252 hasConceptScore W4286593252C138885662 @default.
- W4286593252 hasConceptScore W4286593252C143275388 @default.
- W4286593252 hasConceptScore W4286593252C154945302 @default.
- W4286593252 hasConceptScore W4286593252C162324750 @default.
- W4286593252 hasConceptScore W4286593252C187736073 @default.
- W4286593252 hasConceptScore W4286593252C202444582 @default.
- W4286593252 hasConceptScore W4286593252C204321447 @default.
- W4286593252 hasConceptScore W4286593252C23123220 @default.
- W4286593252 hasConceptScore W4286593252C2522767166 @default.
- W4286593252 hasConceptScore W4286593252C2776224158 @default.
- W4286593252 hasConceptScore W4286593252C2777530160 @default.
- W4286593252 hasConceptScore W4286593252C2779901982 @default.
- W4286593252 hasConceptScore W4286593252C2780451532 @default.
- W4286593252 hasConceptScore W4286593252C33676613 @default.
- W4286593252 hasConceptScore W4286593252C33923547 @default.
- W4286593252 hasConceptScore W4286593252C41008148 @default.
- W4286593252 hasConceptScore W4286593252C41895202 @default.
- W4286593252 hasConceptScore W4286593252C518677369 @default.
- W4286593252 hasConceptScore W4286593252C66402592 @default.
- W4286593252 hasConceptScore W4286593252C9652623 @default.
- W4286593252 hasLocation W42865932521 @default.
- W4286593252 hasOpenAccess W4286593252 @default.
- W4286593252 hasPrimaryLocation W42865932521 @default.
- W4286593252 hasRelatedWork W1606556278 @default.
- W4286593252 hasRelatedWork W1835566166 @default.
- W4286593252 hasRelatedWork W1993954228 @default.
- W4286593252 hasRelatedWork W2353067490 @default.
- W4286593252 hasRelatedWork W2393484506 @default.
- W4286593252 hasRelatedWork W2398825887 @default.
- W4286593252 hasRelatedWork W2408221243 @default.
- W4286593252 hasRelatedWork W2612207031 @default.
- W4286593252 hasRelatedWork W3049681097 @default.
- W4286593252 hasRelatedWork W3164446118 @default.
- W4286593252 isParatext "false" @default.
- W4286593252 isRetracted "false" @default.
- W4286593252 workType "book-chapter" @default.