Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286593263> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4286593263 endingPage "779" @default.
- W4286593263 startingPage "761" @default.
- W4286593263 abstract "The uncritical application of automatic analysis techniques can be insidious. For this reason, the scientific community is very interested in the supervised approach. Can this be enough? This chapter aims to these issues by comparing three machine learning approaches to measuring the sentiment. The case study is the analysis of the sentiment expressed by the Italians on Twitter during the first post-lockdown day. To start the supervised model, it has been necessary to build a stratified sample of tweets by daily and classifying them manually. The model to be test provides for further analysis at the end of the process useful for comparing the three models: index will be built on the tweets processed with the aim of detecting the goodness of the results produced. The comparison of the three algorithms helps the authors to understand not only which is the best approach for the Italian language but tries to understand which strategy is to verify the quality of the data obtained." @default.
- W4286593263 created "2022-07-22" @default.
- W4286593263 creator A5008329971 @default.
- W4286593263 creator A5019429308 @default.
- W4286593263 creator A5078991247 @default.
- W4286593263 date "2022-06-10" @default.
- W4286593263 modified "2023-10-16" @default.
- W4286593263 title "Learning Algorithms of Sentiment Analysis" @default.
- W4286593263 cites W1970012672 @default.
- W4286593263 cites W2019759670 @default.
- W4286593263 cites W2084046180 @default.
- W4286593263 cites W2095655043 @default.
- W4286593263 cites W2112031167 @default.
- W4286593263 cites W2126553339 @default.
- W4286593263 cites W2168681504 @default.
- W4286593263 cites W2464619766 @default.
- W4286593263 cites W2515855575 @default.
- W4286593263 cites W2566811487 @default.
- W4286593263 cites W2766022138 @default.
- W4286593263 cites W2769300400 @default.
- W4286593263 cites W2886965186 @default.
- W4286593263 cites W2900416035 @default.
- W4286593263 cites W3105951585 @default.
- W4286593263 cites W3125733373 @default.
- W4286593263 cites W4205184193 @default.
- W4286593263 cites W4210984920 @default.
- W4286593263 cites W4211186029 @default.
- W4286593263 cites W4253303027 @default.
- W4286593263 doi "https://doi.org/10.4018/978-1-6684-6303-1.ch040" @default.
- W4286593263 hasPublicationYear "2022" @default.
- W4286593263 type Work @default.
- W4286593263 citedByCount "0" @default.
- W4286593263 crossrefType "book-chapter" @default.
- W4286593263 hasAuthorship W4286593263A5008329971 @default.
- W4286593263 hasAuthorship W4286593263A5019429308 @default.
- W4286593263 hasAuthorship W4286593263A5078991247 @default.
- W4286593263 hasConcept C111472728 @default.
- W4286593263 hasConcept C111919701 @default.
- W4286593263 hasConcept C119857082 @default.
- W4286593263 hasConcept C124101348 @default.
- W4286593263 hasConcept C138885662 @default.
- W4286593263 hasConcept C154945302 @default.
- W4286593263 hasConcept C185592680 @default.
- W4286593263 hasConcept C198531522 @default.
- W4286593263 hasConcept C204321447 @default.
- W4286593263 hasConcept C2779530757 @default.
- W4286593263 hasConcept C41008148 @default.
- W4286593263 hasConcept C43617362 @default.
- W4286593263 hasConcept C66402592 @default.
- W4286593263 hasConcept C98045186 @default.
- W4286593263 hasConceptScore W4286593263C111472728 @default.
- W4286593263 hasConceptScore W4286593263C111919701 @default.
- W4286593263 hasConceptScore W4286593263C119857082 @default.
- W4286593263 hasConceptScore W4286593263C124101348 @default.
- W4286593263 hasConceptScore W4286593263C138885662 @default.
- W4286593263 hasConceptScore W4286593263C154945302 @default.
- W4286593263 hasConceptScore W4286593263C185592680 @default.
- W4286593263 hasConceptScore W4286593263C198531522 @default.
- W4286593263 hasConceptScore W4286593263C204321447 @default.
- W4286593263 hasConceptScore W4286593263C2779530757 @default.
- W4286593263 hasConceptScore W4286593263C41008148 @default.
- W4286593263 hasConceptScore W4286593263C43617362 @default.
- W4286593263 hasConceptScore W4286593263C66402592 @default.
- W4286593263 hasConceptScore W4286593263C98045186 @default.
- W4286593263 hasLocation W42865932631 @default.
- W4286593263 hasOpenAccess W4286593263 @default.
- W4286593263 hasPrimaryLocation W42865932631 @default.
- W4286593263 hasRelatedWork W2901590103 @default.
- W4286593263 hasRelatedWork W3015597294 @default.
- W4286593263 hasRelatedWork W3027466640 @default.
- W4286593263 hasRelatedWork W3107474891 @default.
- W4286593263 hasRelatedWork W3192794374 @default.
- W4286593263 hasRelatedWork W4281608370 @default.
- W4286593263 hasRelatedWork W4285815787 @default.
- W4286593263 hasRelatedWork W4327531511 @default.
- W4286593263 hasRelatedWork W4360986142 @default.
- W4286593263 hasRelatedWork W4362613237 @default.
- W4286593263 isParatext "false" @default.
- W4286593263 isRetracted "false" @default.
- W4286593263 workType "book-chapter" @default.