Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286768763> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4286768763 endingPage "402" @default.
- W4286768763 startingPage "391" @default.
- W4286768763 abstract "AbstractFrame-based and motion-based deep learning framework have been employed in this paper for fire detection. This paper presents a novel method for fire detection that employs different Convolutional Neural Networks (CNN) architectures for fire detection. Firstly, frame based features such as fire-color, fire texture, and analysis of perimeter disorder which are present in the still images were extracted using transfer learning. Secondly, motion-based CNN is used for extracting motion based features of fire such as growing region, moving area and uprising part detection. Optical flow was employed to calculate the motion of frame intensities. These extracted intensity features which being projected as image were fed into Deep CNN for find out the uniqueness in the motion of fire. Features from both the models are combined to feed into different classifiers. Method is tested on different varieties of non-fire videos which are similar to forest fire such as fire-works, sun based videos, traffic at night and flower-valley videos. Accuracy on such similar situations has proven the precision and robustness in the proposed method.KeywordsTransfer learningFire detectionDeep CNNOptical flow" @default.
- W4286768763 created "2022-07-23" @default.
- W4286768763 creator A5014020993 @default.
- W4286768763 creator A5030765476 @default.
- W4286768763 date "2022-01-01" @default.
- W4286768763 modified "2023-09-29" @default.
- W4286768763 title "Fire Detection Model Using Deep Learning Techniques" @default.
- W4286768763 cites W1531515974 @default.
- W4286768763 cites W1578285471 @default.
- W4286768763 cites W1971511111 @default.
- W4286768763 cites W1984282654 @default.
- W4286768763 cites W2012345045 @default.
- W4286768763 cites W2013300501 @default.
- W4286768763 cites W2017404693 @default.
- W4286768763 cites W2027645937 @default.
- W4286768763 cites W2043003144 @default.
- W4286768763 cites W2052643923 @default.
- W4286768763 cites W2097117768 @default.
- W4286768763 cites W2103941746 @default.
- W4286768763 cites W2146867294 @default.
- W4286768763 cites W2194775991 @default.
- W4286768763 cites W2802352598 @default.
- W4286768763 cites W3053427166 @default.
- W4286768763 cites W3130804234 @default.
- W4286768763 cites W3136217325 @default.
- W4286768763 cites W3161728163 @default.
- W4286768763 cites W4232336912 @default.
- W4286768763 doi "https://doi.org/10.1007/978-3-031-11349-9_34" @default.
- W4286768763 hasPublicationYear "2022" @default.
- W4286768763 type Work @default.
- W4286768763 citedByCount "0" @default.
- W4286768763 crossrefType "book-chapter" @default.
- W4286768763 hasAuthorship W4286768763A5014020993 @default.
- W4286768763 hasAuthorship W4286768763A5030765476 @default.
- W4286768763 hasConcept C104114177 @default.
- W4286768763 hasConcept C104317684 @default.
- W4286768763 hasConcept C108583219 @default.
- W4286768763 hasConcept C115961682 @default.
- W4286768763 hasConcept C126042441 @default.
- W4286768763 hasConcept C127413603 @default.
- W4286768763 hasConcept C150899416 @default.
- W4286768763 hasConcept C153180895 @default.
- W4286768763 hasConcept C154945302 @default.
- W4286768763 hasConcept C155542232 @default.
- W4286768763 hasConcept C160633673 @default.
- W4286768763 hasConcept C170154142 @default.
- W4286768763 hasConcept C185592680 @default.
- W4286768763 hasConcept C2780836893 @default.
- W4286768763 hasConcept C31972630 @default.
- W4286768763 hasConcept C41008148 @default.
- W4286768763 hasConcept C55493867 @default.
- W4286768763 hasConcept C63479239 @default.
- W4286768763 hasConcept C76155785 @default.
- W4286768763 hasConcept C81363708 @default.
- W4286768763 hasConceptScore W4286768763C104114177 @default.
- W4286768763 hasConceptScore W4286768763C104317684 @default.
- W4286768763 hasConceptScore W4286768763C108583219 @default.
- W4286768763 hasConceptScore W4286768763C115961682 @default.
- W4286768763 hasConceptScore W4286768763C126042441 @default.
- W4286768763 hasConceptScore W4286768763C127413603 @default.
- W4286768763 hasConceptScore W4286768763C150899416 @default.
- W4286768763 hasConceptScore W4286768763C153180895 @default.
- W4286768763 hasConceptScore W4286768763C154945302 @default.
- W4286768763 hasConceptScore W4286768763C155542232 @default.
- W4286768763 hasConceptScore W4286768763C160633673 @default.
- W4286768763 hasConceptScore W4286768763C170154142 @default.
- W4286768763 hasConceptScore W4286768763C185592680 @default.
- W4286768763 hasConceptScore W4286768763C2780836893 @default.
- W4286768763 hasConceptScore W4286768763C31972630 @default.
- W4286768763 hasConceptScore W4286768763C41008148 @default.
- W4286768763 hasConceptScore W4286768763C55493867 @default.
- W4286768763 hasConceptScore W4286768763C63479239 @default.
- W4286768763 hasConceptScore W4286768763C76155785 @default.
- W4286768763 hasConceptScore W4286768763C81363708 @default.
- W4286768763 hasLocation W42867687631 @default.
- W4286768763 hasOpenAccess W4286768763 @default.
- W4286768763 hasPrimaryLocation W42867687631 @default.
- W4286768763 hasRelatedWork W10555355 @default.
- W4286768763 hasRelatedWork W10586115 @default.
- W4286768763 hasRelatedWork W11618421 @default.
- W4286768763 hasRelatedWork W12793662 @default.
- W4286768763 hasRelatedWork W2279739 @default.
- W4286768763 hasRelatedWork W5565507 @default.
- W4286768763 hasRelatedWork W6150178 @default.
- W4286768763 hasRelatedWork W7303821 @default.
- W4286768763 hasRelatedWork W8920115 @default.
- W4286768763 hasRelatedWork W9521719 @default.
- W4286768763 isParatext "false" @default.
- W4286768763 isRetracted "false" @default.
- W4286768763 workType "book-chapter" @default.