Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286770815> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4286770815 endingPage "108" @default.
- W4286770815 startingPage "95" @default.
- W4286770815 abstract "Neoplastic cells are tumorous cells that damage the cells around them and are the prologue for cancer development in organs. However, identifying these cells poses a bottle-neck in the research of cancer cure as it is an extremely tedious job to manually isolate these from the rest of the cells in the tissue. Hence, the automation of this process using deep learning (DL)-based object detection and segmentation techniques such as Mask R-CNN will allow researchers and pathologists to save valuable time otherwise consumed in manually identifying these nuclei. The main objective of this research paper is to provide an instance segmentation technique to label and segment neoplastic cell nuclei from multiple instances of whole-slide images (WSI). For this process, a contemporary neural network architecture called the mask region-based convolutional neural network (Mask R-CNN) was used. This proposed technique generates a pixel-wise binary mask. These masks are capable of segmenting these instances and facilitating the advancement of intelligent systems in medical imaging and computational pathology. This time can instead be devoted to developing better cures by conducting more research. The paper also highlights the best techniques and practices that can be employed while training a model for a task of such complexity. The results of these techniques provide a mean average precision (mAP) score of 0.756 and a binary panoptic quality (bPQ) score of 0.675." @default.
- W4286770815 created "2022-07-23" @default.
- W4286770815 creator A5019719665 @default.
- W4286770815 creator A5020891125 @default.
- W4286770815 creator A5026659293 @default.
- W4286770815 creator A5052938710 @default.
- W4286770815 date "2022-07-24" @default.
- W4286770815 modified "2023-09-27" @default.
- W4286770815 title "Neoplastic—Nuclei Cell Labelling Using Mask R-CNN" @default.
- W4286770815 cites W1536680647 @default.
- W4286770815 cites W1545870281 @default.
- W4286770815 cites W1861492603 @default.
- W4286770815 cites W1903029394 @default.
- W4286770815 cites W2009797711 @default.
- W4286770815 cites W2038311741 @default.
- W4286770815 cites W2097117768 @default.
- W4286770815 cites W2102605133 @default.
- W4286770815 cites W2117539524 @default.
- W4286770815 cites W2194775991 @default.
- W4286770815 cites W22040386 @default.
- W4286770815 cites W2302255633 @default.
- W4286770815 cites W2517954747 @default.
- W4286770815 cites W2592929672 @default.
- W4286770815 cites W2952512768 @default.
- W4286770815 cites W2963150697 @default.
- W4286770815 cites W2969980243 @default.
- W4286770815 cites W2974825848 @default.
- W4286770815 cites W2977650145 @default.
- W4286770815 cites W2982862532 @default.
- W4286770815 cites W2999219213 @default.
- W4286770815 cites W3016553397 @default.
- W4286770815 cites W3034969314 @default.
- W4286770815 cites W3045460727 @default.
- W4286770815 cites W3082043744 @default.
- W4286770815 cites W4230995645 @default.
- W4286770815 cites W4255421341 @default.
- W4286770815 cites W2537548881 @default.
- W4286770815 doi "https://doi.org/10.1007/978-981-19-0151-5_8" @default.
- W4286770815 hasPublicationYear "2022" @default.
- W4286770815 type Work @default.
- W4286770815 citedByCount "0" @default.
- W4286770815 crossrefType "book-chapter" @default.
- W4286770815 hasAuthorship W4286770815A5019719665 @default.
- W4286770815 hasAuthorship W4286770815A5020891125 @default.
- W4286770815 hasAuthorship W4286770815A5026659293 @default.
- W4286770815 hasAuthorship W4286770815A5052938710 @default.
- W4286770815 hasConcept C108583219 @default.
- W4286770815 hasConcept C111919701 @default.
- W4286770815 hasConcept C115901376 @default.
- W4286770815 hasConcept C127413603 @default.
- W4286770815 hasConcept C153180895 @default.
- W4286770815 hasConcept C154945302 @default.
- W4286770815 hasConcept C2781238097 @default.
- W4286770815 hasConcept C31972630 @default.
- W4286770815 hasConcept C41008148 @default.
- W4286770815 hasConcept C78519656 @default.
- W4286770815 hasConcept C81363708 @default.
- W4286770815 hasConcept C89600930 @default.
- W4286770815 hasConcept C98045186 @default.
- W4286770815 hasConceptScore W4286770815C108583219 @default.
- W4286770815 hasConceptScore W4286770815C111919701 @default.
- W4286770815 hasConceptScore W4286770815C115901376 @default.
- W4286770815 hasConceptScore W4286770815C127413603 @default.
- W4286770815 hasConceptScore W4286770815C153180895 @default.
- W4286770815 hasConceptScore W4286770815C154945302 @default.
- W4286770815 hasConceptScore W4286770815C2781238097 @default.
- W4286770815 hasConceptScore W4286770815C31972630 @default.
- W4286770815 hasConceptScore W4286770815C41008148 @default.
- W4286770815 hasConceptScore W4286770815C78519656 @default.
- W4286770815 hasConceptScore W4286770815C81363708 @default.
- W4286770815 hasConceptScore W4286770815C89600930 @default.
- W4286770815 hasConceptScore W4286770815C98045186 @default.
- W4286770815 hasLocation W42867708151 @default.
- W4286770815 hasOpenAccess W4286770815 @default.
- W4286770815 hasPrimaryLocation W42867708151 @default.
- W4286770815 hasRelatedWork W2004370856 @default.
- W4286770815 hasRelatedWork W2019566805 @default.
- W4286770815 hasRelatedWork W2383464976 @default.
- W4286770815 hasRelatedWork W2738221750 @default.
- W4286770815 hasRelatedWork W3102253946 @default.
- W4286770815 hasRelatedWork W3144574764 @default.
- W4286770815 hasRelatedWork W3156786002 @default.
- W4286770815 hasRelatedWork W4293211451 @default.
- W4286770815 hasRelatedWork W4308191152 @default.
- W4286770815 hasRelatedWork W1967061043 @default.
- W4286770815 isParatext "false" @default.
- W4286770815 isRetracted "false" @default.
- W4286770815 workType "book-chapter" @default.