Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286770819> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4286770819 endingPage "286" @default.
- W4286770819 startingPage "277" @default.
- W4286770819 abstract "Lung cancer or lung carcinoma is one of the major reasons for non-accidental death in the world with a high fatality rate in both men and women. The major cause of lung cancer is wrong lifestyle choices such as consumption of beedi, cigarette, and hukka. Lung cancer is broadly categorized as small cell lung carcinoma (SCLC) and non-small cell lung carcinoma (NSCLC). It is very difficult to detect lung cancer well in advance. However, technological advances in medical imaging have resulted in the diagnosis and prediction of various stages of lung cancer by analyzing CT scans. In the present paper, a constructive review of the existing approaches for lung nodule detection and classification using machine learning approaches is presented. Authors have analyzed the articles published in the last decade to access the current status of the research in the field of lung cancer classification. The survey study concluded that the involvement of optimization approaches to improve the feature extraction and segmentation stage has been involved in recent years. Further, it is observed that the integration of the neural network architecture has become the first choice of numerous researchers for lung cancer classification." @default.
- W4286770819 created "2022-07-23" @default.
- W4286770819 creator A5026593731 @default.
- W4286770819 creator A5078662215 @default.
- W4286770819 creator A5080843018 @default.
- W4286770819 date "2022-07-24" @default.
- W4286770819 modified "2023-10-17" @default.
- W4286770819 title "Review on Lung Nodule Segmentation-Based Lung Cancer Classification Using Machine Learning Approaches" @default.
- W4286770819 cites W1986275404 @default.
- W4286770819 cites W1989419520 @default.
- W4286770819 cites W2023753684 @default.
- W4286770819 cites W2091261823 @default.
- W4286770819 cites W2136177244 @default.
- W4286770819 cites W2158805220 @default.
- W4286770819 cites W2410057778 @default.
- W4286770819 cites W2527523823 @default.
- W4286770819 cites W2589388975 @default.
- W4286770819 cites W2767749475 @default.
- W4286770819 cites W2788841786 @default.
- W4286770819 cites W2793564293 @default.
- W4286770819 cites W2794249786 @default.
- W4286770819 cites W2799903018 @default.
- W4286770819 cites W2802087177 @default.
- W4286770819 cites W2906111507 @default.
- W4286770819 cites W2962949379 @default.
- W4286770819 cites W2963553763 @default.
- W4286770819 cites W2992693011 @default.
- W4286770819 cites W3006988488 @default.
- W4286770819 cites W3010872511 @default.
- W4286770819 cites W3157274600 @default.
- W4286770819 cites W3171865120 @default.
- W4286770819 cites W3213912300 @default.
- W4286770819 cites W4242951470 @default.
- W4286770819 cites W4245973262 @default.
- W4286770819 doi "https://doi.org/10.1007/978-981-19-0151-5_24" @default.
- W4286770819 hasPublicationYear "2022" @default.
- W4286770819 type Work @default.
- W4286770819 citedByCount "9" @default.
- W4286770819 countsByYear W42867708192022 @default.
- W4286770819 countsByYear W42867708192023 @default.
- W4286770819 crossrefType "book-chapter" @default.
- W4286770819 hasAuthorship W4286770819A5026593731 @default.
- W4286770819 hasAuthorship W4286770819A5078662215 @default.
- W4286770819 hasAuthorship W4286770819A5080843018 @default.
- W4286770819 hasConcept C119857082 @default.
- W4286770819 hasConcept C121608353 @default.
- W4286770819 hasConcept C126322002 @default.
- W4286770819 hasConcept C126838900 @default.
- W4286770819 hasConcept C143998085 @default.
- W4286770819 hasConcept C151730666 @default.
- W4286770819 hasConcept C154945302 @default.
- W4286770819 hasConcept C19527891 @default.
- W4286770819 hasConcept C2776256026 @default.
- W4286770819 hasConcept C2776731575 @default.
- W4286770819 hasConcept C2777714996 @default.
- W4286770819 hasConcept C41008148 @default.
- W4286770819 hasConcept C71924100 @default.
- W4286770819 hasConcept C86803240 @default.
- W4286770819 hasConceptScore W4286770819C119857082 @default.
- W4286770819 hasConceptScore W4286770819C121608353 @default.
- W4286770819 hasConceptScore W4286770819C126322002 @default.
- W4286770819 hasConceptScore W4286770819C126838900 @default.
- W4286770819 hasConceptScore W4286770819C143998085 @default.
- W4286770819 hasConceptScore W4286770819C151730666 @default.
- W4286770819 hasConceptScore W4286770819C154945302 @default.
- W4286770819 hasConceptScore W4286770819C19527891 @default.
- W4286770819 hasConceptScore W4286770819C2776256026 @default.
- W4286770819 hasConceptScore W4286770819C2776731575 @default.
- W4286770819 hasConceptScore W4286770819C2777714996 @default.
- W4286770819 hasConceptScore W4286770819C41008148 @default.
- W4286770819 hasConceptScore W4286770819C71924100 @default.
- W4286770819 hasConceptScore W4286770819C86803240 @default.
- W4286770819 hasLocation W42867708191 @default.
- W4286770819 hasOpenAccess W4286770819 @default.
- W4286770819 hasPrimaryLocation W42867708191 @default.
- W4286770819 hasRelatedWork W1965919814 @default.
- W4286770819 hasRelatedWork W2078573701 @default.
- W4286770819 hasRelatedWork W2390152934 @default.
- W4286770819 hasRelatedWork W2961085424 @default.
- W4286770819 hasRelatedWork W3205158931 @default.
- W4286770819 hasRelatedWork W4283160551 @default.
- W4286770819 hasRelatedWork W4285733903 @default.
- W4286770819 hasRelatedWork W4317600173 @default.
- W4286770819 hasRelatedWork W4318302273 @default.
- W4286770819 hasRelatedWork W54659473 @default.
- W4286770819 isParatext "false" @default.
- W4286770819 isRetracted "false" @default.
- W4286770819 workType "book-chapter" @default.