Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286784881> ?p ?o ?g. }
- W4286784881 endingPage "118792" @default.
- W4286784881 startingPage "118792" @default.
- W4286784881 abstract "Increasing turbine inlet gas temperature is a main approach to meet the demands for high efficiency and thrust of advanced gas turbine engines. Both of internal and film cooling are often used at the same time for the turbine blade’s cooling to enhance the overall cooling performance and ensure the blade temperature below to the heat resistance temperature of blade material. Most of open studies focused on the individual cooling effect of either internal cooling or film cooling under normal temperature conditions. However, the actual working conditions of blade cooling is that internal cooling and film cooling affect each other because of the coolant flow through film hole and the heat conduction inside the blade solid regions (including the internal disturbing elements). In addition, the temperature difference between turbine inlet gas and coolant is much high. It is found that there are few studies on the coupled heat transfer characteristics of turbine blade cooling. To establish a numerical method for coupled heat transfer analysis of the turbine blade cooling, the coupled heat transfer in two perpendicular channels which are connected by a dividing wall and a film hole through the dividing wall is numerically investigated by simultaneously solving the air flow and convective heat transfer equations in the two passages. The heat conduction through the dividing wall (including the ribs equipped in the internal channel) and the flow through the film hole are also taken into consideration. The interaction between internal and film cooling can thus be explored. The mainstream inlet temperature is set to be 709 K to consider a medium temperature condition of turbine blade, and Reynolds number is 1.08 × 105. The large-eddy simulation (LES) and SST κ-ω are employed to verify the applicability of turbulence models for the simultaneous simulation of internal and film cooling by comparing the numerical consequence with experiment from the published literature. It is indicated that LES can capture the fine structure of the flow field and has high accuracy in predicting the cooling effect. It is discovered that the heat conduction through the dividing wall of the two channels increases both of the internal convective cooling and the film cooling of the mainstream channel in comparison to the adiabatic cooling effect without considering the heat conduction inside the solid regions. In addition, the outflow through the film hole improves Nusselt number of internal channel, and the ribs bring about a slight increase of overall cooling effectiveness near the behind zone of the film hole, but decrease in the downstream a little far from the film hole. Besides, adjusting the blowing ratio could achieve higher blade cooling performance. It is suggested that we should not stay in the stage of studying internal or film cooling separately, but carry out more coupled heat transfer analysis of turbine blade cooling to find the appropriate geometric parameter/configuration of internal and film cooling for the fine design of gas turbine blade cooling, especially today when large-scale numerical calculation has become a reality." @default.
- W4286784881 created "2022-07-24" @default.
- W4286784881 creator A5020210989 @default.
- W4286784881 creator A5027149930 @default.
- W4286784881 creator A5046813200 @default.
- W4286784881 creator A5070314373 @default.
- W4286784881 creator A5086658237 @default.
- W4286784881 date "2022-09-01" @default.
- W4286784881 modified "2023-09-25" @default.
- W4286784881 title "Coupled heat transfer analysis of internal and film cooling of turbine blade under medium temperature conditions" @default.
- W4286784881 cites W1413478229 @default.
- W4286784881 cites W1521079860 @default.
- W4286784881 cites W1990088465 @default.
- W4286784881 cites W1993182259 @default.
- W4286784881 cites W2003441569 @default.
- W4286784881 cites W2009540067 @default.
- W4286784881 cites W2009997314 @default.
- W4286784881 cites W2036887575 @default.
- W4286784881 cites W2042068067 @default.
- W4286784881 cites W2066957756 @default.
- W4286784881 cites W2068078284 @default.
- W4286784881 cites W2076990912 @default.
- W4286784881 cites W2093766483 @default.
- W4286784881 cites W2168795429 @default.
- W4286784881 cites W2528980889 @default.
- W4286784881 cites W2574795139 @default.
- W4286784881 cites W2588229110 @default.
- W4286784881 cites W2745869192 @default.
- W4286784881 cites W2752215635 @default.
- W4286784881 cites W2760795442 @default.
- W4286784881 cites W2772842146 @default.
- W4286784881 cites W2774250661 @default.
- W4286784881 cites W2785068934 @default.
- W4286784881 cites W2889206290 @default.
- W4286784881 cites W2960913125 @default.
- W4286784881 cites W2982045258 @default.
- W4286784881 cites W2995676403 @default.
- W4286784881 cites W3010428212 @default.
- W4286784881 cites W3034570889 @default.
- W4286784881 cites W3124719267 @default.
- W4286784881 cites W3187015569 @default.
- W4286784881 cites W3196993653 @default.
- W4286784881 cites W3197669105 @default.
- W4286784881 cites W3197798348 @default.
- W4286784881 cites W3208866240 @default.
- W4286784881 cites W4231801186 @default.
- W4286784881 cites W4241047764 @default.
- W4286784881 doi "https://doi.org/10.1016/j.applthermaleng.2022.118792" @default.
- W4286784881 hasPublicationYear "2022" @default.
- W4286784881 type Work @default.
- W4286784881 citedByCount "7" @default.
- W4286784881 countsByYear W42867848812022 @default.
- W4286784881 countsByYear W42867848812023 @default.
- W4286784881 crossrefType "journal-article" @default.
- W4286784881 hasAuthorship W4286784881A5020210989 @default.
- W4286784881 hasAuthorship W4286784881A5027149930 @default.
- W4286784881 hasAuthorship W4286784881A5046813200 @default.
- W4286784881 hasAuthorship W4286784881A5070314373 @default.
- W4286784881 hasAuthorship W4286784881A5086658237 @default.
- W4286784881 hasConcept C105923489 @default.
- W4286784881 hasConcept C106169591 @default.
- W4286784881 hasConcept C121332964 @default.
- W4286784881 hasConcept C127413603 @default.
- W4286784881 hasConcept C132646400 @default.
- W4286784881 hasConcept C159985019 @default.
- W4286784881 hasConcept C171483109 @default.
- W4286784881 hasConcept C172100665 @default.
- W4286784881 hasConcept C178790620 @default.
- W4286784881 hasConcept C185592680 @default.
- W4286784881 hasConcept C192562407 @default.
- W4286784881 hasConcept C20381859 @default.
- W4286784881 hasConcept C2778449969 @default.
- W4286784881 hasConcept C38349280 @default.
- W4286784881 hasConcept C41231900 @default.
- W4286784881 hasConcept C50517652 @default.
- W4286784881 hasConcept C57879066 @default.
- W4286784881 hasConcept C7694927 @default.
- W4286784881 hasConcept C78519656 @default.
- W4286784881 hasConcept C91914117 @default.
- W4286784881 hasConceptScore W4286784881C105923489 @default.
- W4286784881 hasConceptScore W4286784881C106169591 @default.
- W4286784881 hasConceptScore W4286784881C121332964 @default.
- W4286784881 hasConceptScore W4286784881C127413603 @default.
- W4286784881 hasConceptScore W4286784881C132646400 @default.
- W4286784881 hasConceptScore W4286784881C159985019 @default.
- W4286784881 hasConceptScore W4286784881C171483109 @default.
- W4286784881 hasConceptScore W4286784881C172100665 @default.
- W4286784881 hasConceptScore W4286784881C178790620 @default.
- W4286784881 hasConceptScore W4286784881C185592680 @default.
- W4286784881 hasConceptScore W4286784881C192562407 @default.
- W4286784881 hasConceptScore W4286784881C20381859 @default.
- W4286784881 hasConceptScore W4286784881C2778449969 @default.
- W4286784881 hasConceptScore W4286784881C38349280 @default.
- W4286784881 hasConceptScore W4286784881C41231900 @default.
- W4286784881 hasConceptScore W4286784881C50517652 @default.
- W4286784881 hasConceptScore W4286784881C57879066 @default.
- W4286784881 hasConceptScore W4286784881C7694927 @default.
- W4286784881 hasConceptScore W4286784881C78519656 @default.