Matches in SemOpenAlex for { <https://semopenalex.org/work/W4286892408> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W4286892408 abstract "Early detection of lung cancer is critical for improvement of patient survival. To address the clinical need for efficacious treatments, genetically engineered mouse models (GEMM) have become integral in identifying and evaluating the molecular underpinnings of this complex disease that may be exploited as therapeutic targets. Assessment of GEMM tumor burden on histopathological sections performed by manual inspection is both time consuming and prone to subjective bias. Therefore, an interplay of needs and challenges exists for computer-aided diagnostic tools, for accurate and efficient analysis of these histopathology images. In this paper, we propose a simple machine learning approach called the graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E). Our method comprises four steps: 1) cascaded graph-based sparse PCA, 2) PCA binary hashing, 3) block-wise histograms, and 4) support vector machine (SVM) classification. In our proposed architecture, graph-based sparse PCA is employed to learn the filter banks of the multiple stages of a convolutional network. This is followed by PCA hashing and block histograms for indexing and pooling. The meaningful features extracted from this GS-PCA are then fed to an SVM classifier. We evaluate the performance of the proposed algorithm on H&E slides obtained from an inducible K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC) and show that our algorithm is efficient and provides improved detection accuracy compared to existing algorithms." @default.
- W4286892408 created "2022-07-25" @default.
- W4286892408 creator A5000162479 @default.
- W4286892408 creator A5026377895 @default.
- W4286892408 creator A5031496876 @default.
- W4286892408 creator A5038840367 @default.
- W4286892408 creator A5042387274 @default.
- W4286892408 creator A5046365008 @default.
- W4286892408 creator A5060236564 @default.
- W4286892408 creator A5063334797 @default.
- W4286892408 creator A5065785234 @default.
- W4286892408 creator A5088129503 @default.
- W4286892408 date "2021-10-27" @default.
- W4286892408 modified "2023-09-26" @default.
- W4286892408 title "Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based Sparse PCA Network" @default.
- W4286892408 doi "https://doi.org/10.48550/arxiv.2110.14728" @default.
- W4286892408 hasPublicationYear "2021" @default.
- W4286892408 type Work @default.
- W4286892408 citedByCount "0" @default.
- W4286892408 crossrefType "posted-content" @default.
- W4286892408 hasAuthorship W4286892408A5000162479 @default.
- W4286892408 hasAuthorship W4286892408A5026377895 @default.
- W4286892408 hasAuthorship W4286892408A5031496876 @default.
- W4286892408 hasAuthorship W4286892408A5038840367 @default.
- W4286892408 hasAuthorship W4286892408A5042387274 @default.
- W4286892408 hasAuthorship W4286892408A5046365008 @default.
- W4286892408 hasAuthorship W4286892408A5060236564 @default.
- W4286892408 hasAuthorship W4286892408A5063334797 @default.
- W4286892408 hasAuthorship W4286892408A5065785234 @default.
- W4286892408 hasAuthorship W4286892408A5088129503 @default.
- W4286892408 hasBestOaLocation W42868924081 @default.
- W4286892408 hasConcept C12267149 @default.
- W4286892408 hasConcept C153180895 @default.
- W4286892408 hasConcept C154945302 @default.
- W4286892408 hasConcept C27438332 @default.
- W4286892408 hasConcept C41008148 @default.
- W4286892408 hasConcept C97931131 @default.
- W4286892408 hasConceptScore W4286892408C12267149 @default.
- W4286892408 hasConceptScore W4286892408C153180895 @default.
- W4286892408 hasConceptScore W4286892408C154945302 @default.
- W4286892408 hasConceptScore W4286892408C27438332 @default.
- W4286892408 hasConceptScore W4286892408C41008148 @default.
- W4286892408 hasConceptScore W4286892408C97931131 @default.
- W4286892408 hasLocation W42868924081 @default.
- W4286892408 hasOpenAccess W4286892408 @default.
- W4286892408 hasPrimaryLocation W42868924081 @default.
- W4286892408 hasRelatedWork W1906421653 @default.
- W4286892408 hasRelatedWork W2005259554 @default.
- W4286892408 hasRelatedWork W2082783427 @default.
- W4286892408 hasRelatedWork W2096566459 @default.
- W4286892408 hasRelatedWork W2150085486 @default.
- W4286892408 hasRelatedWork W2150631642 @default.
- W4286892408 hasRelatedWork W2367227827 @default.
- W4286892408 hasRelatedWork W2999047301 @default.
- W4286892408 hasRelatedWork W3140675663 @default.
- W4286892408 hasRelatedWork W4225691219 @default.
- W4286892408 isParatext "false" @default.
- W4286892408 isRetracted "false" @default.
- W4286892408 workType "article" @default.