Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287009975> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4287009975 endingPage "7408" @default.
- W4287009975 startingPage "7408" @default.
- W4287009975 abstract "The primary motivation is to address difficulties in data interpretation or a reduction in model accuracy. Although differential privacy can provide data privacy guarantees, it also creates problems. Thus, we need to consider the noise setting for differential privacy is currently inconclusive. This paper’s main contribution is finding a balance between privacy and accuracy. The training data of deep learning models may contain private or sensitive corporate information. These may be dangerous to attacks, leading to privacy data leakage for data sharing. Many strategies are for privacy protection, and differential privacy is the most widely applied one. Google proposed a federated learning technology to solve the problem of data silos in 2016. The technology can share information without exchanging original data and has made significant progress in the medical field. However, there is still the risk of data leakage in federated learning; thus, many models are now used with differential privacy mechanisms to minimize the risk. The data in the financial field are similar to medical data, which contains a substantial amount of personal data. The leakage may cause uncontrollable consequences, making data exchange and sharing difficult. Let us suppose that differential privacy applies to the financial field. Financial institutions can provide customers with higher value and personalized services and automate credit scoring and risk management. Unfortunately, the economic area rarely applies differential privacy and attains no consensus on parameter settings. This study compares data security with non-private and differential privacy financial visual models. The paper finds a balance between privacy protection with model accuracy. The results show that when the privacy loss parameter ϵ is between 12.62 and 5.41, the privacy models can protect training data, and the accuracy does not decrease too much." @default.
- W4287009975 created "2022-07-25" @default.
- W4287009975 creator A5008816013 @default.
- W4287009975 creator A5060727198 @default.
- W4287009975 date "2022-07-23" @default.
- W4287009975 modified "2023-09-26" @default.
- W4287009975 title "The Protection of Data Sharing for Privacy in Financial Vision" @default.
- W4287009975 cites W2040228409 @default.
- W4287009975 cites W2051267297 @default.
- W4287009975 cites W2110868467 @default.
- W4287009975 cites W2198253679 @default.
- W4287009975 cites W2473418344 @default.
- W4287009975 cites W2520881573 @default.
- W4287009975 cites W2535690855 @default.
- W4287009975 cites W2594311007 @default.
- W4287009975 cites W2930926105 @default.
- W4287009975 cites W3014538993 @default.
- W4287009975 cites W3032979685 @default.
- W4287009975 cites W3175646727 @default.
- W4287009975 cites W3176551993 @default.
- W4287009975 cites W3192184597 @default.
- W4287009975 cites W3200840849 @default.
- W4287009975 cites W4205228770 @default.
- W4287009975 cites W4206016309 @default.
- W4287009975 cites W77869065 @default.
- W4287009975 doi "https://doi.org/10.3390/app12157408" @default.
- W4287009975 hasPublicationYear "2022" @default.
- W4287009975 type Work @default.
- W4287009975 citedByCount "0" @default.
- W4287009975 crossrefType "journal-article" @default.
- W4287009975 hasAuthorship W4287009975A5008816013 @default.
- W4287009975 hasAuthorship W4287009975A5060727198 @default.
- W4287009975 hasBestOaLocation W42870099751 @default.
- W4287009975 hasConcept C108827166 @default.
- W4287009975 hasConcept C123201435 @default.
- W4287009975 hasConcept C124101348 @default.
- W4287009975 hasConcept C142724271 @default.
- W4287009975 hasConcept C204787440 @default.
- W4287009975 hasConcept C23130292 @default.
- W4287009975 hasConcept C2779201187 @default.
- W4287009975 hasConcept C2779965156 @default.
- W4287009975 hasConcept C38652104 @default.
- W4287009975 hasConcept C41008148 @default.
- W4287009975 hasConcept C509729295 @default.
- W4287009975 hasConcept C69360830 @default.
- W4287009975 hasConcept C71924100 @default.
- W4287009975 hasConceptScore W4287009975C108827166 @default.
- W4287009975 hasConceptScore W4287009975C123201435 @default.
- W4287009975 hasConceptScore W4287009975C124101348 @default.
- W4287009975 hasConceptScore W4287009975C142724271 @default.
- W4287009975 hasConceptScore W4287009975C204787440 @default.
- W4287009975 hasConceptScore W4287009975C23130292 @default.
- W4287009975 hasConceptScore W4287009975C2779201187 @default.
- W4287009975 hasConceptScore W4287009975C2779965156 @default.
- W4287009975 hasConceptScore W4287009975C38652104 @default.
- W4287009975 hasConceptScore W4287009975C41008148 @default.
- W4287009975 hasConceptScore W4287009975C509729295 @default.
- W4287009975 hasConceptScore W4287009975C69360830 @default.
- W4287009975 hasConceptScore W4287009975C71924100 @default.
- W4287009975 hasIssue "15" @default.
- W4287009975 hasLocation W42870099751 @default.
- W4287009975 hasOpenAccess W4287009975 @default.
- W4287009975 hasPrimaryLocation W42870099751 @default.
- W4287009975 hasRelatedWork W1604044185 @default.
- W4287009975 hasRelatedWork W2801576258 @default.
- W4287009975 hasRelatedWork W2883839261 @default.
- W4287009975 hasRelatedWork W2899211198 @default.
- W4287009975 hasRelatedWork W2940702331 @default.
- W4287009975 hasRelatedWork W3189846499 @default.
- W4287009975 hasRelatedWork W4287009975 @default.
- W4287009975 hasRelatedWork W4293566060 @default.
- W4287009975 hasRelatedWork W4386399450 @default.
- W4287009975 hasRelatedWork W2187378813 @default.
- W4287009975 hasVolume "12" @default.
- W4287009975 isParatext "false" @default.
- W4287009975 isRetracted "false" @default.
- W4287009975 workType "article" @default.