Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287017247> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W4287017247 abstract "We consider the homogeneous Dirichlet problem for the integral fractional Laplacian $(-Delta)^s$. We prove optimal Sobolev regularity estimates in Lipschitz domains provided the solution is $C^s$ up to the boundary. We present the construction of graded bisection meshes by a greedy algorithm and derive quasi-optimal convergence rates for approximations to the solution of such a problem by continuous piecewise linear functions. The nonlinear Sobolev scale dictates the relation between regularity and approximability." @default.
- W4287017247 created "2022-07-25" @default.
- W4287017247 creator A5000833969 @default.
- W4287017247 creator A5040883953 @default.
- W4287017247 date "2021-09-01" @default.
- W4287017247 modified "2023-09-23" @default.
- W4287017247 title "Constructive approximation on graded meshes for the integral fractional Laplacian" @default.
- W4287017247 doi "https://doi.org/10.48550/arxiv.2109.00451" @default.
- W4287017247 hasPublicationYear "2021" @default.
- W4287017247 type Work @default.
- W4287017247 citedByCount "0" @default.
- W4287017247 crossrefType "posted-content" @default.
- W4287017247 hasAuthorship W4287017247A5000833969 @default.
- W4287017247 hasAuthorship W4287017247A5040883953 @default.
- W4287017247 hasBestOaLocation W42870172471 @default.
- W4287017247 hasConcept C121332964 @default.
- W4287017247 hasConcept C126255220 @default.
- W4287017247 hasConcept C134306372 @default.
- W4287017247 hasConcept C158622935 @default.
- W4287017247 hasConcept C164660894 @default.
- W4287017247 hasConcept C182310444 @default.
- W4287017247 hasConcept C22324862 @default.
- W4287017247 hasConcept C2524010 @default.
- W4287017247 hasConcept C2779560616 @default.
- W4287017247 hasConcept C28826006 @default.
- W4287017247 hasConcept C31487907 @default.
- W4287017247 hasConcept C33923547 @default.
- W4287017247 hasConcept C62520636 @default.
- W4287017247 hasConcept C99730327 @default.
- W4287017247 hasConceptScore W4287017247C121332964 @default.
- W4287017247 hasConceptScore W4287017247C126255220 @default.
- W4287017247 hasConceptScore W4287017247C134306372 @default.
- W4287017247 hasConceptScore W4287017247C158622935 @default.
- W4287017247 hasConceptScore W4287017247C164660894 @default.
- W4287017247 hasConceptScore W4287017247C182310444 @default.
- W4287017247 hasConceptScore W4287017247C22324862 @default.
- W4287017247 hasConceptScore W4287017247C2524010 @default.
- W4287017247 hasConceptScore W4287017247C2779560616 @default.
- W4287017247 hasConceptScore W4287017247C28826006 @default.
- W4287017247 hasConceptScore W4287017247C31487907 @default.
- W4287017247 hasConceptScore W4287017247C33923547 @default.
- W4287017247 hasConceptScore W4287017247C62520636 @default.
- W4287017247 hasConceptScore W4287017247C99730327 @default.
- W4287017247 hasLocation W42870172471 @default.
- W4287017247 hasOpenAccess W4287017247 @default.
- W4287017247 hasPrimaryLocation W42870172471 @default.
- W4287017247 hasRelatedWork W2082785793 @default.
- W4287017247 hasRelatedWork W2133707208 @default.
- W4287017247 hasRelatedWork W2357175268 @default.
- W4287017247 hasRelatedWork W2465067492 @default.
- W4287017247 hasRelatedWork W2950206945 @default.
- W4287017247 hasRelatedWork W2950613887 @default.
- W4287017247 hasRelatedWork W2995205693 @default.
- W4287017247 hasRelatedWork W3044134271 @default.
- W4287017247 hasRelatedWork W4292706905 @default.
- W4287017247 hasRelatedWork W4311897411 @default.
- W4287017247 isParatext "false" @default.
- W4287017247 isRetracted "false" @default.
- W4287017247 workType "article" @default.