Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287026692> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4287026692 abstract "Probabilistic biological network growth models have been utilized for many tasks including but not limited to capturing mechanism and dynamics of biological growth activities, null model representation, capturing anomalies, etc. Well-known examples of these probabilistic models are Kronecker model, preferential attachment model, and duplication-based model. However, we should frequently keep developing new models to better fit and explain the observed network features while new networks are being observed. Additionally, it is difficult to develop a growth model each time we study a new network. In this paper, we propose BioCode, a framework to automatically discover novel biological growth models matching user-specified graph attributes in directed and undirected biological graphs. BioCode designs a basic set of instructions which are common enough to model a number of well-known biological graph growth models. We combine such instruction-wise representation with a genetic algorithm based optimization procedure to encode models for various biological networks. We mainly evaluate the performance of BioCode in discovering models for biological collaboration networks, gene regulatory networks, metabolic networks, and protein interaction networks which features such as assortativity, clustering coefficient, degree distribution closely match with the true ones in the corresponding real biological networks. As shown by the tests on the simulated graphs, the variance of the distributions of biological networks generated by BioCode is similar to the known models' variance for these biological network types." @default.
- W4287026692 created "2022-07-25" @default.
- W4287026692 creator A5005523015 @default.
- W4287026692 date "2021-08-10" @default.
- W4287026692 modified "2023-09-27" @default.
- W4287026692 title "BioCode: A Data-Driven Procedure to Learn the Growth of Biological Networks" @default.
- W4287026692 doi "https://doi.org/10.48550/arxiv.2108.04776" @default.
- W4287026692 hasPublicationYear "2021" @default.
- W4287026692 type Work @default.
- W4287026692 citedByCount "0" @default.
- W4287026692 crossrefType "posted-content" @default.
- W4287026692 hasAuthorship W4287026692A5005523015 @default.
- W4287026692 hasBestOaLocation W42870266921 @default.
- W4287026692 hasConcept C104122410 @default.
- W4287026692 hasConcept C114614502 @default.
- W4287026692 hasConcept C119857082 @default.
- W4287026692 hasConcept C124101348 @default.
- W4287026692 hasConcept C136764020 @default.
- W4287026692 hasConcept C154945302 @default.
- W4287026692 hasConcept C17744445 @default.
- W4287026692 hasConcept C199539241 @default.
- W4287026692 hasConcept C201797286 @default.
- W4287026692 hasConcept C22047676 @default.
- W4287026692 hasConcept C2776359362 @default.
- W4287026692 hasConcept C2780186347 @default.
- W4287026692 hasConcept C28225019 @default.
- W4287026692 hasConcept C33923547 @default.
- W4287026692 hasConcept C34947359 @default.
- W4287026692 hasConcept C38652104 @default.
- W4287026692 hasConcept C41008148 @default.
- W4287026692 hasConcept C49937458 @default.
- W4287026692 hasConcept C60644358 @default.
- W4287026692 hasConcept C73555534 @default.
- W4287026692 hasConcept C80444323 @default.
- W4287026692 hasConcept C86803240 @default.
- W4287026692 hasConcept C89694873 @default.
- W4287026692 hasConcept C94625758 @default.
- W4287026692 hasConceptScore W4287026692C104122410 @default.
- W4287026692 hasConceptScore W4287026692C114614502 @default.
- W4287026692 hasConceptScore W4287026692C119857082 @default.
- W4287026692 hasConceptScore W4287026692C124101348 @default.
- W4287026692 hasConceptScore W4287026692C136764020 @default.
- W4287026692 hasConceptScore W4287026692C154945302 @default.
- W4287026692 hasConceptScore W4287026692C17744445 @default.
- W4287026692 hasConceptScore W4287026692C199539241 @default.
- W4287026692 hasConceptScore W4287026692C201797286 @default.
- W4287026692 hasConceptScore W4287026692C22047676 @default.
- W4287026692 hasConceptScore W4287026692C2776359362 @default.
- W4287026692 hasConceptScore W4287026692C2780186347 @default.
- W4287026692 hasConceptScore W4287026692C28225019 @default.
- W4287026692 hasConceptScore W4287026692C33923547 @default.
- W4287026692 hasConceptScore W4287026692C34947359 @default.
- W4287026692 hasConceptScore W4287026692C38652104 @default.
- W4287026692 hasConceptScore W4287026692C41008148 @default.
- W4287026692 hasConceptScore W4287026692C49937458 @default.
- W4287026692 hasConceptScore W4287026692C60644358 @default.
- W4287026692 hasConceptScore W4287026692C73555534 @default.
- W4287026692 hasConceptScore W4287026692C80444323 @default.
- W4287026692 hasConceptScore W4287026692C86803240 @default.
- W4287026692 hasConceptScore W4287026692C89694873 @default.
- W4287026692 hasConceptScore W4287026692C94625758 @default.
- W4287026692 hasLocation W42870266921 @default.
- W4287026692 hasOpenAccess W4287026692 @default.
- W4287026692 hasPrimaryLocation W42870266921 @default.
- W4287026692 hasRelatedWork W1976730753 @default.
- W4287026692 hasRelatedWork W2024088208 @default.
- W4287026692 hasRelatedWork W2098921680 @default.
- W4287026692 hasRelatedWork W2102289730 @default.
- W4287026692 hasRelatedWork W2353485001 @default.
- W4287026692 hasRelatedWork W2809250158 @default.
- W4287026692 hasRelatedWork W2952377308 @default.
- W4287026692 hasRelatedWork W3191358021 @default.
- W4287026692 hasRelatedWork W3197759119 @default.
- W4287026692 hasRelatedWork W4287026692 @default.
- W4287026692 isParatext "false" @default.
- W4287026692 isRetracted "false" @default.
- W4287026692 workType "article" @default.