Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287029095> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4287029095 abstract "We present two accurate and efficient algorithms for solving the incompressible, irrotational Euler equations with a free surface in two dimensions with background flow over a periodic, multiply-connected fluid domain that includes stationary obstacles and variable bottom topography. One approach is formulated in terms of the surface velocity potential while the other evolves the vortex sheet strength. Both methods employ layer potentials in the form of periodized Cauchy integrals to compute the normal velocity of the free surface, are compatible with arbitrary parameterizations of the free surface and boundaries, and allow for circulation around each obstacle, which leads to multiple-valued velocity potentials but single-valued stream functions. We prove that the resulting second-kind Fredholm integral equations are invertible, possibly after a physically motivated finite-rank correction. In an angle-arclength setting, we show how to avoid curve reconstruction errors that are incompatible with spatial periodicity. We use the proposed methods to study gravity-capillary waves generated by flow around several elliptical obstacles above a flat or variable bottom boundary. In each case, the free surface eventually self-intersects in a splash singularity or collides with a boundary. We also show how to evaluate the velocity and pressure with spectral accuracy throughout the fluid, including near the free surface and solid boundaries. To assess the accuracy of the time evolution, we monitor energy conservation and the decay of Fourier modes and compare the numerical results of the two methods to each other. We implement several solvers for the discretized linear systems and compare their performance. The fastest approach employs a graphics processing unit (GPU) to construct the matrices and carry out iterations of the generalized minimal residual method (GMRES)." @default.
- W4287029095 created "2022-07-25" @default.
- W4287029095 creator A5045633935 @default.
- W4287029095 creator A5051195478 @default.
- W4287029095 creator A5055763634 @default.
- W4287029095 creator A5063561103 @default.
- W4287029095 creator A5067565794 @default.
- W4287029095 creator A5077647172 @default.
- W4287029095 date "2021-08-03" @default.
- W4287029095 modified "2023-09-26" @default.
- W4287029095 title "Numerical Algorithms for Water Waves with Background Flow over Obstacles and Topography" @default.
- W4287029095 doi "https://doi.org/10.48550/arxiv.2108.01786" @default.
- W4287029095 hasPublicationYear "2021" @default.
- W4287029095 type Work @default.
- W4287029095 citedByCount "0" @default.
- W4287029095 crossrefType "posted-content" @default.
- W4287029095 hasAuthorship W4287029095A5045633935 @default.
- W4287029095 hasAuthorship W4287029095A5051195478 @default.
- W4287029095 hasAuthorship W4287029095A5055763634 @default.
- W4287029095 hasAuthorship W4287029095A5063561103 @default.
- W4287029095 hasAuthorship W4287029095A5067565794 @default.
- W4287029095 hasAuthorship W4287029095A5077647172 @default.
- W4287029095 hasBestOaLocation W42870290951 @default.
- W4287029095 hasConcept C121332964 @default.
- W4287029095 hasConcept C134306372 @default.
- W4287029095 hasConcept C140820882 @default.
- W4287029095 hasConcept C147457402 @default.
- W4287029095 hasConcept C157216528 @default.
- W4287029095 hasConcept C171889981 @default.
- W4287029095 hasConcept C182310444 @default.
- W4287029095 hasConcept C200114574 @default.
- W4287029095 hasConcept C2524010 @default.
- W4287029095 hasConcept C2776672048 @default.
- W4287029095 hasConcept C2776799497 @default.
- W4287029095 hasConcept C33923547 @default.
- W4287029095 hasConcept C38349280 @default.
- W4287029095 hasConcept C38409319 @default.
- W4287029095 hasConcept C57879066 @default.
- W4287029095 hasConcept C62354387 @default.
- W4287029095 hasConcept C73000952 @default.
- W4287029095 hasConcept C84655787 @default.
- W4287029095 hasConceptScore W4287029095C121332964 @default.
- W4287029095 hasConceptScore W4287029095C134306372 @default.
- W4287029095 hasConceptScore W4287029095C140820882 @default.
- W4287029095 hasConceptScore W4287029095C147457402 @default.
- W4287029095 hasConceptScore W4287029095C157216528 @default.
- W4287029095 hasConceptScore W4287029095C171889981 @default.
- W4287029095 hasConceptScore W4287029095C182310444 @default.
- W4287029095 hasConceptScore W4287029095C200114574 @default.
- W4287029095 hasConceptScore W4287029095C2524010 @default.
- W4287029095 hasConceptScore W4287029095C2776672048 @default.
- W4287029095 hasConceptScore W4287029095C2776799497 @default.
- W4287029095 hasConceptScore W4287029095C33923547 @default.
- W4287029095 hasConceptScore W4287029095C38349280 @default.
- W4287029095 hasConceptScore W4287029095C38409319 @default.
- W4287029095 hasConceptScore W4287029095C57879066 @default.
- W4287029095 hasConceptScore W4287029095C62354387 @default.
- W4287029095 hasConceptScore W4287029095C73000952 @default.
- W4287029095 hasConceptScore W4287029095C84655787 @default.
- W4287029095 hasLocation W42870290951 @default.
- W4287029095 hasOpenAccess W4287029095 @default.
- W4287029095 hasPrimaryLocation W42870290951 @default.
- W4287029095 hasRelatedWork W1978855601 @default.
- W4287029095 hasRelatedWork W1995064192 @default.
- W4287029095 hasRelatedWork W2013271325 @default.
- W4287029095 hasRelatedWork W2033187110 @default.
- W4287029095 hasRelatedWork W2053264631 @default.
- W4287029095 hasRelatedWork W2068694015 @default.
- W4287029095 hasRelatedWork W2517989476 @default.
- W4287029095 hasRelatedWork W2562887735 @default.
- W4287029095 hasRelatedWork W4248507481 @default.
- W4287029095 hasRelatedWork W2163894322 @default.
- W4287029095 isParatext "false" @default.
- W4287029095 isRetracted "false" @default.
- W4287029095 workType "article" @default.