Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287029145> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4287029145 abstract "International Classification of Disease (ICD) codes are widely used for encoding diagnoses in electronic health records (EHR). Automated methods have been developed over the years for predicting biomedical responses using EHR that borrow information among diagnostically similar patients. Relatively less attention has been paid to developing patient similarity measures that model the structure of ICD codes and the presence of multiple chronic conditions, where a chronic condition is defined as a set of ICD codes. Motivated by this problem, we first develop a type of string kernel function for measuring similarity between a pair of subsets of ICD codes, which uses the definition of chronic conditions. Second, we extend this similarity measure to define a family of covariance functions on subsets of ICD codes. Using this family, we develop Gaussian process (GP) priors for Bayesian nonparametric regression and classification using diagnoses and other demographic information as covariates. Markov chain Monte Carlo (MCMC) algorithms are used for posterior inference and predictions. The proposed methods are free of any tuning parameters and are well-suited for automated prediction of continuous and categorical biomedical responses that depend on chronic conditions. We evaluate the practical performance of our method on EHR data collected from 1660 patients at the University of Iowa Hospitals and Clinics (UIHC) with six different primary cancer sites. Our method has better sensitivity and specificity than its competitors in classifying different primary cancer sites and estimates the marginal associations between chronic conditions and primary cancer sites." @default.
- W4287029145 created "2022-07-25" @default.
- W4287029145 creator A5043229546 @default.
- W4287029145 creator A5049124418 @default.
- W4287029145 creator A5051859413 @default.
- W4287029145 creator A5074038050 @default.
- W4287029145 creator A5086233911 @default.
- W4287029145 date "2021-08-03" @default.
- W4287029145 modified "2023-09-28" @default.
- W4287029145 title "Gaussian Process Regression and Classification using International Classification of Disease Codes as Covariates" @default.
- W4287029145 doi "https://doi.org/10.48550/arxiv.2108.01813" @default.
- W4287029145 hasPublicationYear "2021" @default.
- W4287029145 type Work @default.
- W4287029145 citedByCount "0" @default.
- W4287029145 crossrefType "posted-content" @default.
- W4287029145 hasAuthorship W4287029145A5043229546 @default.
- W4287029145 hasAuthorship W4287029145A5049124418 @default.
- W4287029145 hasAuthorship W4287029145A5051859413 @default.
- W4287029145 hasAuthorship W4287029145A5074038050 @default.
- W4287029145 hasAuthorship W4287029145A5086233911 @default.
- W4287029145 hasBestOaLocation W42870291451 @default.
- W4287029145 hasConcept C102366305 @default.
- W4287029145 hasConcept C105795698 @default.
- W4287029145 hasConcept C107673813 @default.
- W4287029145 hasConcept C111350023 @default.
- W4287029145 hasConcept C119043178 @default.
- W4287029145 hasConcept C119857082 @default.
- W4287029145 hasConcept C121332964 @default.
- W4287029145 hasConcept C124101348 @default.
- W4287029145 hasConcept C142724271 @default.
- W4287029145 hasConcept C153180895 @default.
- W4287029145 hasConcept C154945302 @default.
- W4287029145 hasConcept C163716315 @default.
- W4287029145 hasConcept C33923547 @default.
- W4287029145 hasConcept C41008148 @default.
- W4287029145 hasConcept C5274069 @default.
- W4287029145 hasConcept C534262118 @default.
- W4287029145 hasConcept C61326573 @default.
- W4287029145 hasConcept C62520636 @default.
- W4287029145 hasConcept C71924100 @default.
- W4287029145 hasConceptScore W4287029145C102366305 @default.
- W4287029145 hasConceptScore W4287029145C105795698 @default.
- W4287029145 hasConceptScore W4287029145C107673813 @default.
- W4287029145 hasConceptScore W4287029145C111350023 @default.
- W4287029145 hasConceptScore W4287029145C119043178 @default.
- W4287029145 hasConceptScore W4287029145C119857082 @default.
- W4287029145 hasConceptScore W4287029145C121332964 @default.
- W4287029145 hasConceptScore W4287029145C124101348 @default.
- W4287029145 hasConceptScore W4287029145C142724271 @default.
- W4287029145 hasConceptScore W4287029145C153180895 @default.
- W4287029145 hasConceptScore W4287029145C154945302 @default.
- W4287029145 hasConceptScore W4287029145C163716315 @default.
- W4287029145 hasConceptScore W4287029145C33923547 @default.
- W4287029145 hasConceptScore W4287029145C41008148 @default.
- W4287029145 hasConceptScore W4287029145C5274069 @default.
- W4287029145 hasConceptScore W4287029145C534262118 @default.
- W4287029145 hasConceptScore W4287029145C61326573 @default.
- W4287029145 hasConceptScore W4287029145C62520636 @default.
- W4287029145 hasConceptScore W4287029145C71924100 @default.
- W4287029145 hasLocation W42870291451 @default.
- W4287029145 hasOpenAccess W4287029145 @default.
- W4287029145 hasPrimaryLocation W42870291451 @default.
- W4287029145 hasRelatedWork W2027617915 @default.
- W4287029145 hasRelatedWork W2130056346 @default.
- W4287029145 hasRelatedWork W2572572583 @default.
- W4287029145 hasRelatedWork W2580063968 @default.
- W4287029145 hasRelatedWork W2788920412 @default.
- W4287029145 hasRelatedWork W2991968753 @default.
- W4287029145 hasRelatedWork W3092376966 @default.
- W4287029145 hasRelatedWork W3094090087 @default.
- W4287029145 hasRelatedWork W3124781765 @default.
- W4287029145 hasRelatedWork W4233153962 @default.
- W4287029145 isParatext "false" @default.
- W4287029145 isRetracted "false" @default.
- W4287029145 workType "article" @default.