Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287029254> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W4287029254 abstract "When we consider the action of a finite group on a polynomial ring, a polynomial unchanged by the action is called an invariant polynomial. A famous result of Noether states that in characteristic zero the maximal degree of a minimal invariant polynomial is bounded above by the order of the group. Our work establishes that the same bound holds for invariant skew polynomials in the exterior algebra. Our approach to the problem relies on a theorem of Derksen that connects invariant theory to the study of ideals of subspace arrangements. We adapt his proof over the polynomial ring to the exterior algebra, reducing the question to establishing a bound on the Castelnuovo-Mumford regularity of intersections of linear ideals in the exterior algebra. We prove the required regularity bound using tools from representation theory. In particular, the proof relies on the existence of a functor on the category of polynomial functors that translates resolutions of ideals of subspace arrangements over the polynomial ring to resolutions of ideals of subspace arrangements over the exterior algebra." @default.
- W4287029254 created "2022-07-25" @default.
- W4287029254 creator A5027093756 @default.
- W4287029254 date "2021-08-03" @default.
- W4287029254 modified "2023-09-27" @default.
- W4287029254 title "Degree bounds for invariant skew polynomials" @default.
- W4287029254 doi "https://doi.org/10.48550/arxiv.2108.01767" @default.
- W4287029254 hasPublicationYear "2021" @default.
- W4287029254 type Work @default.
- W4287029254 citedByCount "0" @default.
- W4287029254 crossrefType "posted-content" @default.
- W4287029254 hasAuthorship W4287029254A5027093756 @default.
- W4287029254 hasBestOaLocation W42870292541 @default.
- W4287029254 hasConcept C101044782 @default.
- W4287029254 hasConcept C118615104 @default.
- W4287029254 hasConcept C134306372 @default.
- W4287029254 hasConcept C134530390 @default.
- W4287029254 hasConcept C136119220 @default.
- W4287029254 hasConcept C190470478 @default.
- W4287029254 hasConcept C202444582 @default.
- W4287029254 hasConcept C33923547 @default.
- W4287029254 hasConcept C37914503 @default.
- W4287029254 hasConcept C90119067 @default.
- W4287029254 hasConcept C9485509 @default.
- W4287029254 hasConcept C94863793 @default.
- W4287029254 hasConceptScore W4287029254C101044782 @default.
- W4287029254 hasConceptScore W4287029254C118615104 @default.
- W4287029254 hasConceptScore W4287029254C134306372 @default.
- W4287029254 hasConceptScore W4287029254C134530390 @default.
- W4287029254 hasConceptScore W4287029254C136119220 @default.
- W4287029254 hasConceptScore W4287029254C190470478 @default.
- W4287029254 hasConceptScore W4287029254C202444582 @default.
- W4287029254 hasConceptScore W4287029254C33923547 @default.
- W4287029254 hasConceptScore W4287029254C37914503 @default.
- W4287029254 hasConceptScore W4287029254C90119067 @default.
- W4287029254 hasConceptScore W4287029254C9485509 @default.
- W4287029254 hasConceptScore W4287029254C94863793 @default.
- W4287029254 hasLocation W42870292541 @default.
- W4287029254 hasOpenAccess W4287029254 @default.
- W4287029254 hasPrimaryLocation W42870292541 @default.
- W4287029254 hasRelatedWork W102273463 @default.
- W4287029254 hasRelatedWork W2009896212 @default.
- W4287029254 hasRelatedWork W2013836387 @default.
- W4287029254 hasRelatedWork W2026930124 @default.
- W4287029254 hasRelatedWork W2033807235 @default.
- W4287029254 hasRelatedWork W2056503095 @default.
- W4287029254 hasRelatedWork W2077147784 @default.
- W4287029254 hasRelatedWork W2370444048 @default.
- W4287029254 hasRelatedWork W2463094104 @default.
- W4287029254 hasRelatedWork W4317617468 @default.
- W4287029254 isParatext "false" @default.
- W4287029254 isRetracted "false" @default.
- W4287029254 workType "article" @default.