Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287029299> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W4287029299 abstract "Advances in sensing and learning algorithms have led to increasingly mature solutions for human detection by robots, particularly in selected use-cases such as pedestrian detection for self-driving cars or close-range person detection in consumer settings. Despite this progress, the simple question which sensor-algorithm combination is best suited for a person detection task at hand? remains hard to answer. In this paper, we tackle this issue by conducting a systematic cross-modal analysis of sensor-algorithm combinations typically used in robotics. We compare the performance of state-of-the-art person detectors for 2D range data, 3D lidar, and RGB-D data as well as selected combinations thereof in a challenging industrial use-case. We further address the related problems of data scarcity in the industrial target domain, and that recent research on human detection in 3D point clouds has mostly focused on autonomous driving scenarios. To leverage these methodological advances for robotics applications, we utilize a simple, yet effective multi-sensor transfer learning strategy by extending a strong image-based RGB-D detector to provide cross-modal supervision for lidar detectors in the form of weak 3D bounding box labels. Our results show a large variance among the different approaches in terms of detection performance, generalization, frame rates and computational requirements. As our use-case contains difficulties representative for a wide range of service robot applications, we believe that these results point to relevant open challenges for further research and provide valuable support to practitioners for the design of their robot system." @default.
- W4287029299 created "2022-07-25" @default.
- W4287029299 creator A5035942756 @default.
- W4287029299 creator A5038680621 @default.
- W4287029299 creator A5065481566 @default.
- W4287029299 creator A5084203306 @default.
- W4287029299 date "2021-08-03" @default.
- W4287029299 modified "2023-10-18" @default.
- W4287029299 title "Cross-Modal Analysis of Human Detection for Robotics: An Industrial Case Study" @default.
- W4287029299 doi "https://doi.org/10.48550/arxiv.2108.01495" @default.
- W4287029299 hasPublicationYear "2021" @default.
- W4287029299 type Work @default.
- W4287029299 citedByCount "0" @default.
- W4287029299 crossrefType "posted-content" @default.
- W4287029299 hasAuthorship W4287029299A5035942756 @default.
- W4287029299 hasAuthorship W4287029299A5038680621 @default.
- W4287029299 hasAuthorship W4287029299A5065481566 @default.
- W4287029299 hasAuthorship W4287029299A5084203306 @default.
- W4287029299 hasBestOaLocation W42870292991 @default.
- W4287029299 hasConcept C119857082 @default.
- W4287029299 hasConcept C131979681 @default.
- W4287029299 hasConcept C153083717 @default.
- W4287029299 hasConcept C153180895 @default.
- W4287029299 hasConcept C154945302 @default.
- W4287029299 hasConcept C2776151529 @default.
- W4287029299 hasConcept C31972630 @default.
- W4287029299 hasConcept C34413123 @default.
- W4287029299 hasConcept C41008148 @default.
- W4287029299 hasConcept C90509273 @default.
- W4287029299 hasConceptScore W4287029299C119857082 @default.
- W4287029299 hasConceptScore W4287029299C131979681 @default.
- W4287029299 hasConceptScore W4287029299C153083717 @default.
- W4287029299 hasConceptScore W4287029299C153180895 @default.
- W4287029299 hasConceptScore W4287029299C154945302 @default.
- W4287029299 hasConceptScore W4287029299C2776151529 @default.
- W4287029299 hasConceptScore W4287029299C31972630 @default.
- W4287029299 hasConceptScore W4287029299C34413123 @default.
- W4287029299 hasConceptScore W4287029299C41008148 @default.
- W4287029299 hasConceptScore W4287029299C90509273 @default.
- W4287029299 hasLocation W42870292991 @default.
- W4287029299 hasOpenAccess W4287029299 @default.
- W4287029299 hasPrimaryLocation W42870292991 @default.
- W4287029299 hasRelatedWork W2782964878 @default.
- W4287029299 hasRelatedWork W2979718872 @default.
- W4287029299 hasRelatedWork W2996693821 @default.
- W4287029299 hasRelatedWork W3002270006 @default.
- W4287029299 hasRelatedWork W3145385008 @default.
- W4287029299 hasRelatedWork W3172823523 @default.
- W4287029299 hasRelatedWork W3204162010 @default.
- W4287029299 hasRelatedWork W4238992361 @default.
- W4287029299 hasRelatedWork W4310007291 @default.
- W4287029299 hasRelatedWork W4323338571 @default.
- W4287029299 isParatext "false" @default.
- W4287029299 isRetracted "false" @default.
- W4287029299 workType "article" @default.