Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287074824> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4287074824 abstract "Computer-aided analysis of biological images typically requires extensive training on large-scale annotated datasets, which is not viable in many situations. In this paper we present GAN-DL, a Discriminator Learner based on the StyleGAN2 architecture, which we employ for self-supervised image representation learning in the case of fluorescent biological images. We show that Wasserstein Generative Adversarial Networks combined with linear Support Vector Machines enable high-throughput compound screening based on raw images. We demonstrate this by classifying active and inactive compounds tested for the inhibition of SARS-CoV-2 infection in VERO and HRCE cell lines. In contrast to previous methods, our deep learning based approach does not require any annotation besides the one that is normally collected during the sample preparation process. We test our technique on the RxRx19a Sars-CoV-2 image collection. The dataset consists of fluorescent images that were generated to assess the ability of regulatory-approved or in late-stage clinical trials compound to modulate the in vitro infection from SARS-CoV-2 in both VERO and HRCE cell lines. We show that our technique can be exploited not only for classification tasks, but also to effectively derive a dose response curve for the tested treatments, in a self-supervised manner. Lastly, we demonstrate its generalization capabilities by successfully addressing a zero-shot learning task, consisting in the categorization of four different cell types of the RxRx1 fluorescent images collection." @default.
- W4287074824 created "2022-07-25" @default.
- W4287074824 creator A5006895284 @default.
- W4287074824 creator A5028610334 @default.
- W4287074824 creator A5031161800 @default.
- W4287074824 creator A5068452817 @default.
- W4287074824 creator A5090505273 @default.
- W4287074824 date "2021-07-16" @default.
- W4287074824 modified "2023-10-16" @default.
- W4287074824 title "Exploiting generative self-supervised learning for the assessment of biological images with lack of annotations: a COVID-19 case-study" @default.
- W4287074824 doi "https://doi.org/10.48550/arxiv.2107.07761" @default.
- W4287074824 hasPublicationYear "2021" @default.
- W4287074824 type Work @default.
- W4287074824 citedByCount "0" @default.
- W4287074824 crossrefType "posted-content" @default.
- W4287074824 hasAuthorship W4287074824A5006895284 @default.
- W4287074824 hasAuthorship W4287074824A5028610334 @default.
- W4287074824 hasAuthorship W4287074824A5031161800 @default.
- W4287074824 hasAuthorship W4287074824A5068452817 @default.
- W4287074824 hasAuthorship W4287074824A5090505273 @default.
- W4287074824 hasBestOaLocation W42870748241 @default.
- W4287074824 hasConcept C119857082 @default.
- W4287074824 hasConcept C134306372 @default.
- W4287074824 hasConcept C136389625 @default.
- W4287074824 hasConcept C153180895 @default.
- W4287074824 hasConcept C154945302 @default.
- W4287074824 hasConcept C177148314 @default.
- W4287074824 hasConcept C2776321320 @default.
- W4287074824 hasConcept C2779803651 @default.
- W4287074824 hasConcept C33923547 @default.
- W4287074824 hasConcept C39890363 @default.
- W4287074824 hasConcept C41008148 @default.
- W4287074824 hasConcept C50644808 @default.
- W4287074824 hasConcept C76155785 @default.
- W4287074824 hasConcept C94124525 @default.
- W4287074824 hasConcept C94915269 @default.
- W4287074824 hasConceptScore W4287074824C119857082 @default.
- W4287074824 hasConceptScore W4287074824C134306372 @default.
- W4287074824 hasConceptScore W4287074824C136389625 @default.
- W4287074824 hasConceptScore W4287074824C153180895 @default.
- W4287074824 hasConceptScore W4287074824C154945302 @default.
- W4287074824 hasConceptScore W4287074824C177148314 @default.
- W4287074824 hasConceptScore W4287074824C2776321320 @default.
- W4287074824 hasConceptScore W4287074824C2779803651 @default.
- W4287074824 hasConceptScore W4287074824C33923547 @default.
- W4287074824 hasConceptScore W4287074824C39890363 @default.
- W4287074824 hasConceptScore W4287074824C41008148 @default.
- W4287074824 hasConceptScore W4287074824C50644808 @default.
- W4287074824 hasConceptScore W4287074824C76155785 @default.
- W4287074824 hasConceptScore W4287074824C94124525 @default.
- W4287074824 hasConceptScore W4287074824C94915269 @default.
- W4287074824 hasLocation W42870748241 @default.
- W4287074824 hasLocation W42870748242 @default.
- W4287074824 hasOpenAccess W4287074824 @default.
- W4287074824 hasPrimaryLocation W42870748241 @default.
- W4287074824 hasRelatedWork W2886603761 @default.
- W4287074824 hasRelatedWork W2906643110 @default.
- W4287074824 hasRelatedWork W2951337574 @default.
- W4287074824 hasRelatedWork W2975513049 @default.
- W4287074824 hasRelatedWork W2989932438 @default.
- W4287074824 hasRelatedWork W3153922349 @default.
- W4287074824 hasRelatedWork W3206054829 @default.
- W4287074824 hasRelatedWork W4206897074 @default.
- W4287074824 hasRelatedWork W4226172683 @default.
- W4287074824 hasRelatedWork W4286816990 @default.
- W4287074824 isParatext "false" @default.
- W4287074824 isRetracted "false" @default.
- W4287074824 workType "article" @default.