Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287112912> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4287112912 abstract "Recently, bladder cancer has been significantly increased in terms of incidence and mortality. Currently, two subtypes are known based on tumour growth: non-muscle invasive (NMIBC) and muscle-invasive bladder cancer (MIBC). In this work, we focus on the MIBC subtype because it is of the worst prognosis and can spread to adjacent organs. We present a self-learning framework to grade bladder cancer from histological images stained via immunohistochemical techniques. Specifically, we propose a novel Deep Convolutional Embedded Attention Clustering (DCEAC) which allows classifying histological patches into different severity levels of the disease, according to the patterns established in the literature. The proposed DCEAC model follows a two-step fully unsupervised learning methodology to discern between non-tumour, mild and infiltrative patterns from high-resolution samples of 512x512 pixels. Our system outperforms previous clustering-based methods by including a convolutional attention module, which allows refining the features of the latent space before the classification stage. The proposed network exceeds state-of-the-art approaches by 2-3% across different metrics, achieving a final average accuracy of 0.9034 in a multi-class scenario. Furthermore, the reported class activation maps evidence that our model is able to learn by itself the same patterns that clinicians consider relevant, without incurring prior annotation steps. This fact supposes a breakthrough in muscle-invasive bladder cancer grading which bridges the gap with respect to train the model on labelled data." @default.
- W4287112912 created "2022-07-25" @default.
- W4287112912 creator A5014654098 @default.
- W4287112912 creator A5019517367 @default.
- W4287112912 creator A5037959756 @default.
- W4287112912 creator A5043316752 @default.
- W4287112912 creator A5073696104 @default.
- W4287112912 date "2021-06-25" @default.
- W4287112912 modified "2023-10-08" @default.
- W4287112912 title "A Novel Self-Learning Framework for Bladder Cancer Grading Using Histopathological Images" @default.
- W4287112912 doi "https://doi.org/10.48550/arxiv.2106.13559" @default.
- W4287112912 hasPublicationYear "2021" @default.
- W4287112912 type Work @default.
- W4287112912 citedByCount "0" @default.
- W4287112912 crossrefType "posted-content" @default.
- W4287112912 hasAuthorship W4287112912A5014654098 @default.
- W4287112912 hasAuthorship W4287112912A5019517367 @default.
- W4287112912 hasAuthorship W4287112912A5037959756 @default.
- W4287112912 hasAuthorship W4287112912A5043316752 @default.
- W4287112912 hasAuthorship W4287112912A5073696104 @default.
- W4287112912 hasBestOaLocation W42871129121 @default.
- W4287112912 hasConcept C108583219 @default.
- W4287112912 hasConcept C121608353 @default.
- W4287112912 hasConcept C126322002 @default.
- W4287112912 hasConcept C153180895 @default.
- W4287112912 hasConcept C154945302 @default.
- W4287112912 hasConcept C160633673 @default.
- W4287112912 hasConcept C18903297 @default.
- W4287112912 hasConcept C2777286243 @default.
- W4287112912 hasConcept C2777522853 @default.
- W4287112912 hasConcept C2780352672 @default.
- W4287112912 hasConcept C41008148 @default.
- W4287112912 hasConcept C71924100 @default.
- W4287112912 hasConcept C73555534 @default.
- W4287112912 hasConcept C81363708 @default.
- W4287112912 hasConcept C86803240 @default.
- W4287112912 hasConceptScore W4287112912C108583219 @default.
- W4287112912 hasConceptScore W4287112912C121608353 @default.
- W4287112912 hasConceptScore W4287112912C126322002 @default.
- W4287112912 hasConceptScore W4287112912C153180895 @default.
- W4287112912 hasConceptScore W4287112912C154945302 @default.
- W4287112912 hasConceptScore W4287112912C160633673 @default.
- W4287112912 hasConceptScore W4287112912C18903297 @default.
- W4287112912 hasConceptScore W4287112912C2777286243 @default.
- W4287112912 hasConceptScore W4287112912C2777522853 @default.
- W4287112912 hasConceptScore W4287112912C2780352672 @default.
- W4287112912 hasConceptScore W4287112912C41008148 @default.
- W4287112912 hasConceptScore W4287112912C71924100 @default.
- W4287112912 hasConceptScore W4287112912C73555534 @default.
- W4287112912 hasConceptScore W4287112912C81363708 @default.
- W4287112912 hasConceptScore W4287112912C86803240 @default.
- W4287112912 hasLocation W42871129121 @default.
- W4287112912 hasLocation W42871129122 @default.
- W4287112912 hasOpenAccess W4287112912 @default.
- W4287112912 hasPrimaryLocation W42871129121 @default.
- W4287112912 hasRelatedWork W2731899572 @default.
- W4287112912 hasRelatedWork W2738221750 @default.
- W4287112912 hasRelatedWork W2811121616 @default.
- W4287112912 hasRelatedWork W2944063455 @default.
- W4287112912 hasRelatedWork W2944600676 @default.
- W4287112912 hasRelatedWork W3014375572 @default.
- W4287112912 hasRelatedWork W3133861977 @default.
- W4287112912 hasRelatedWork W3156786002 @default.
- W4287112912 hasRelatedWork W3186111093 @default.
- W4287112912 hasRelatedWork W4200173597 @default.
- W4287112912 isParatext "false" @default.
- W4287112912 isRetracted "false" @default.
- W4287112912 workType "article" @default.