Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287123806> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4287123806 abstract "Accurate and trustworthy epidemic forecasting is an important problem that has impact on public health planning and disease mitigation. Most existing epidemic forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions. Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations; e.g. it is difficult to specify meaningful priors in Bayesian NNs, while methods like deep ensembling are computationally expensive in practice. In this paper, we fill this important gap. We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP, which directly models the probability density of the forecast value. EPIFNP leverages a dynamic stochastic correlation graph to model the correlations between sequences in a non-parametric way, and designs different stochastic latent variables to capture functional uncertainty from different perspectives. Our extensive experiments in a real-time flu forecasting setting show that EPIFNP significantly outperforms previous state-of-the-art models in both accuracy and calibration metrics, up to 2.5x in accuracy and 2.4x in calibration. Additionally, due to properties of its generative process,EPIFNP learns the relations between the current season and similar patterns of historical seasons,enabling interpretable forecasts. Beyond epidemic forecasting, the EPIFNP can be of independent interest for advancing principled uncertainty quantification in deep sequential models for predictive analytics" @default.
- W4287123806 created "2022-07-25" @default.
- W4287123806 creator A5023953489 @default.
- W4287123806 creator A5061110232 @default.
- W4287123806 creator A5067521241 @default.
- W4287123806 creator A5089966579 @default.
- W4287123806 creator A5090499084 @default.
- W4287123806 date "2021-06-07" @default.
- W4287123806 modified "2023-09-28" @default.
- W4287123806 title "When in Doubt: Neural Non-Parametric Uncertainty Quantification for Epidemic Forecasting" @default.
- W4287123806 doi "https://doi.org/10.48550/arxiv.2106.03904" @default.
- W4287123806 hasPublicationYear "2021" @default.
- W4287123806 type Work @default.
- W4287123806 citedByCount "0" @default.
- W4287123806 crossrefType "posted-content" @default.
- W4287123806 hasAuthorship W4287123806A5023953489 @default.
- W4287123806 hasAuthorship W4287123806A5061110232 @default.
- W4287123806 hasAuthorship W4287123806A5067521241 @default.
- W4287123806 hasAuthorship W4287123806A5089966579 @default.
- W4287123806 hasAuthorship W4287123806A5090499084 @default.
- W4287123806 hasBestOaLocation W42871238061 @default.
- W4287123806 hasConcept C105795698 @default.
- W4287123806 hasConcept C107673813 @default.
- W4287123806 hasConcept C117251300 @default.
- W4287123806 hasConcept C119857082 @default.
- W4287123806 hasConcept C122282355 @default.
- W4287123806 hasConcept C124101348 @default.
- W4287123806 hasConcept C154945302 @default.
- W4287123806 hasConcept C160234255 @default.
- W4287123806 hasConcept C165838908 @default.
- W4287123806 hasConcept C167966045 @default.
- W4287123806 hasConcept C177769412 @default.
- W4287123806 hasConcept C32230216 @default.
- W4287123806 hasConcept C33923547 @default.
- W4287123806 hasConcept C39890363 @default.
- W4287123806 hasConcept C41008148 @default.
- W4287123806 hasConcept C49937458 @default.
- W4287123806 hasConcept C50644808 @default.
- W4287123806 hasConceptScore W4287123806C105795698 @default.
- W4287123806 hasConceptScore W4287123806C107673813 @default.
- W4287123806 hasConceptScore W4287123806C117251300 @default.
- W4287123806 hasConceptScore W4287123806C119857082 @default.
- W4287123806 hasConceptScore W4287123806C122282355 @default.
- W4287123806 hasConceptScore W4287123806C124101348 @default.
- W4287123806 hasConceptScore W4287123806C154945302 @default.
- W4287123806 hasConceptScore W4287123806C160234255 @default.
- W4287123806 hasConceptScore W4287123806C165838908 @default.
- W4287123806 hasConceptScore W4287123806C167966045 @default.
- W4287123806 hasConceptScore W4287123806C177769412 @default.
- W4287123806 hasConceptScore W4287123806C32230216 @default.
- W4287123806 hasConceptScore W4287123806C33923547 @default.
- W4287123806 hasConceptScore W4287123806C39890363 @default.
- W4287123806 hasConceptScore W4287123806C41008148 @default.
- W4287123806 hasConceptScore W4287123806C49937458 @default.
- W4287123806 hasConceptScore W4287123806C50644808 @default.
- W4287123806 hasLocation W42871238061 @default.
- W4287123806 hasOpenAccess W4287123806 @default.
- W4287123806 hasPrimaryLocation W42871238061 @default.
- W4287123806 hasRelatedWork W1485785177 @default.
- W4287123806 hasRelatedWork W2000948586 @default.
- W4287123806 hasRelatedWork W2482912105 @default.
- W4287123806 hasRelatedWork W2763138175 @default.
- W4287123806 hasRelatedWork W2789980315 @default.
- W4287123806 hasRelatedWork W2944881986 @default.
- W4287123806 hasRelatedWork W3000691203 @default.
- W4287123806 hasRelatedWork W3035042266 @default.
- W4287123806 hasRelatedWork W4249395738 @default.
- W4287123806 hasRelatedWork W4287754048 @default.
- W4287123806 isParatext "false" @default.
- W4287123806 isRetracted "false" @default.
- W4287123806 workType "article" @default.