Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287146875> ?p ?o ?g. }
- W4287146875 endingPage "42283" @default.
- W4287146875 startingPage "42261" @default.
- W4287146875 abstract "Pandemics are a severe threat to lives in the universe and our universe encounters several pandemics till now. COVID-19 is one of them, which is a viral infectious disease that increased morbidity and mortality worldwide. This has a negative impact on countries’ economies, as well as social and political concerns throughout the world. The growths of social media have witnessed much pandemic-related news and are shared by many groups of people. This social media news was also helpful to analyze the effects of the pandemic clearly. Twitter is one of the social media networks where people shared COVID-19 related news in a wider range. Meanwhile, several approaches have been proposed to analyze the COVID-19 related sentimental analysis. To enhance the accuracy of sentimental analysis, we have proposed a novel approach known as Sentimental Analysis of Twitter social media Data (SATD). Our proposed method is based on five different machine learning models such as Logistic Regression, Random Forest Classifier, Multinomial NB Classifier, Support Vector Machine, and Decision Tree Classifier. These five classifiers possess various advantages and hence the proposed approach effectively classifies the tweets from the Twint. Experimental analyses are made and these classifier models are used to calculate different values such as precision, recall, f1-score, and support. Moreover, the results are also represented as a confusion matrix, accuracy, precision, and receiver operating characteristic (ROC) graphs. From the experimental and discussion section, it is obtained that the accuracy of our proposed classifier model is high." @default.
- W4287146875 created "2022-07-25" @default.
- W4287146875 creator A5008149538 @default.
- W4287146875 creator A5019342905 @default.
- W4287146875 creator A5031637260 @default.
- W4287146875 date "2022-07-25" @default.
- W4287146875 modified "2023-10-11" @default.
- W4287146875 title "Sentiment analysis of COVID-19 social media data through machine learning" @default.
- W4287146875 cites W2062913298 @default.
- W4287146875 cites W2072990165 @default.
- W4287146875 cites W2111412754 @default.
- W4287146875 cites W2376019662 @default.
- W4287146875 cites W2396946830 @default.
- W4287146875 cites W2513457109 @default.
- W4287146875 cites W2594005637 @default.
- W4287146875 cites W2612186323 @default.
- W4287146875 cites W2627030070 @default.
- W4287146875 cites W2753498304 @default.
- W4287146875 cites W2766542243 @default.
- W4287146875 cites W2766970445 @default.
- W4287146875 cites W2786640468 @default.
- W4287146875 cites W2793247029 @default.
- W4287146875 cites W2793336785 @default.
- W4287146875 cites W2801208592 @default.
- W4287146875 cites W2801323795 @default.
- W4287146875 cites W2807671431 @default.
- W4287146875 cites W2810839781 @default.
- W4287146875 cites W2888821844 @default.
- W4287146875 cites W2901396884 @default.
- W4287146875 cites W2910020460 @default.
- W4287146875 cites W2910325236 @default.
- W4287146875 cites W2941871756 @default.
- W4287146875 cites W2947899520 @default.
- W4287146875 cites W2997037612 @default.
- W4287146875 cites W3010864733 @default.
- W4287146875 cites W3011133285 @default.
- W4287146875 cites W3011642264 @default.
- W4287146875 cites W3016668033 @default.
- W4287146875 cites W3019674250 @default.
- W4287146875 cites W3024620668 @default.
- W4287146875 cites W3035011439 @default.
- W4287146875 cites W3044754832 @default.
- W4287146875 cites W3106567530 @default.
- W4287146875 cites W3131504710 @default.
- W4287146875 cites W3178326938 @default.
- W4287146875 cites W4244160889 @default.
- W4287146875 cites W4247563072 @default.
- W4287146875 cites W4255443783 @default.
- W4287146875 cites W854920577 @default.
- W4287146875 cites W2288903678 @default.
- W4287146875 doi "https://doi.org/10.1007/s11042-022-13492-w" @default.
- W4287146875 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35912062" @default.
- W4287146875 hasPublicationYear "2022" @default.
- W4287146875 type Work @default.
- W4287146875 citedByCount "11" @default.
- W4287146875 countsByYear W42871468752023 @default.
- W4287146875 crossrefType "journal-article" @default.
- W4287146875 hasAuthorship W4287146875A5008149538 @default.
- W4287146875 hasAuthorship W4287146875A5019342905 @default.
- W4287146875 hasAuthorship W4287146875A5031637260 @default.
- W4287146875 hasBestOaLocation W42871468751 @default.
- W4287146875 hasConcept C11171543 @default.
- W4287146875 hasConcept C119857082 @default.
- W4287146875 hasConcept C12267149 @default.
- W4287146875 hasConcept C136764020 @default.
- W4287146875 hasConcept C138602881 @default.
- W4287146875 hasConcept C142724271 @default.
- W4287146875 hasConcept C151956035 @default.
- W4287146875 hasConcept C154945302 @default.
- W4287146875 hasConcept C15744967 @default.
- W4287146875 hasConcept C169258074 @default.
- W4287146875 hasConcept C2522767166 @default.
- W4287146875 hasConcept C2779134260 @default.
- W4287146875 hasConcept C2781140086 @default.
- W4287146875 hasConcept C3008058167 @default.
- W4287146875 hasConcept C41008148 @default.
- W4287146875 hasConcept C518677369 @default.
- W4287146875 hasConcept C524204448 @default.
- W4287146875 hasConcept C66402592 @default.
- W4287146875 hasConcept C71924100 @default.
- W4287146875 hasConcept C84525736 @default.
- W4287146875 hasConcept C89623803 @default.
- W4287146875 hasConcept C95623464 @default.
- W4287146875 hasConceptScore W4287146875C11171543 @default.
- W4287146875 hasConceptScore W4287146875C119857082 @default.
- W4287146875 hasConceptScore W4287146875C12267149 @default.
- W4287146875 hasConceptScore W4287146875C136764020 @default.
- W4287146875 hasConceptScore W4287146875C138602881 @default.
- W4287146875 hasConceptScore W4287146875C142724271 @default.
- W4287146875 hasConceptScore W4287146875C151956035 @default.
- W4287146875 hasConceptScore W4287146875C154945302 @default.
- W4287146875 hasConceptScore W4287146875C15744967 @default.
- W4287146875 hasConceptScore W4287146875C169258074 @default.
- W4287146875 hasConceptScore W4287146875C2522767166 @default.
- W4287146875 hasConceptScore W4287146875C2779134260 @default.
- W4287146875 hasConceptScore W4287146875C2781140086 @default.
- W4287146875 hasConceptScore W4287146875C3008058167 @default.
- W4287146875 hasConceptScore W4287146875C41008148 @default.