Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287148474> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4287148474 endingPage "726" @default.
- W4287148474 startingPage "726" @default.
- W4287148474 abstract "This paper presents an improved artificial neural network (ANN) training using response surface methodology (RSM) optimization for membrane flux prediction. The improved ANN utilizes the design of experiment (DoE) technique to determine the neural network parameters. The technique has the advantage of training performance, with a reduced training time and number of repetitions in achieving good model prediction for the permeate flux of palm oil mill effluent. The conventional training process is performed by the trial-and-error method, which is time consuming. In this work, Levenberg-Marquardt (lm) and gradient descent with momentum (gdm) training functions are used, the feed-forward neural network (FFNN) structure is applied to predict the permeate flux, and airflow and transmembrane pressure are the input variables. The network parameters include the number of neurons, the learning rate, the momentum, the epoch, and the training functions. To realize the effectiveness of the DoE strategy, central composite design is incorporated into neural network methodology to achieve both good model accuracy and improved training performance. The simulation results show an improvement of more than 50% of training performance, with less repetition of the training process for the RSM-based FFNN (FFNN-RSM) compared with the conventional-based FFNN (FFNN-lm and FFNN-gdm). In addition, a good accuracy of the models is achieved, with a smaller generalization error." @default.
- W4287148474 created "2022-07-25" @default.
- W4287148474 creator A5035642308 @default.
- W4287148474 creator A5074711669 @default.
- W4287148474 date "2022-07-23" @default.
- W4287148474 modified "2023-10-14" @default.
- W4287148474 title "Improved Artificial Neural Network Training Based on Response Surface Methodology for Membrane Flux Prediction" @default.
- W4287148474 cites W1968222839 @default.
- W4287148474 cites W1975708850 @default.
- W4287148474 cites W1978408345 @default.
- W4287148474 cites W1991382832 @default.
- W4287148474 cites W1994247447 @default.
- W4287148474 cites W2004847971 @default.
- W4287148474 cites W2006190974 @default.
- W4287148474 cites W2022537594 @default.
- W4287148474 cites W2022777849 @default.
- W4287148474 cites W2029408467 @default.
- W4287148474 cites W2034734595 @default.
- W4287148474 cites W2043803578 @default.
- W4287148474 cites W2048509079 @default.
- W4287148474 cites W2049427294 @default.
- W4287148474 cites W2054510342 @default.
- W4287148474 cites W2068912744 @default.
- W4287148474 cites W2073934525 @default.
- W4287148474 cites W2084280252 @default.
- W4287148474 cites W2102328104 @default.
- W4287148474 cites W2108297291 @default.
- W4287148474 cites W2122782494 @default.
- W4287148474 cites W2168878484 @default.
- W4287148474 cites W2182855566 @default.
- W4287148474 cites W2318722916 @default.
- W4287148474 cites W2415768042 @default.
- W4287148474 cites W2497509499 @default.
- W4287148474 cites W2533164945 @default.
- W4287148474 cites W2561638654 @default.
- W4287148474 cites W2601966302 @default.
- W4287148474 cites W2621210567 @default.
- W4287148474 cites W2897167843 @default.
- W4287148474 cites W2912675773 @default.
- W4287148474 cites W2957382261 @default.
- W4287148474 cites W3048540001 @default.
- W4287148474 cites W3121144918 @default.
- W4287148474 cites W3185239974 @default.
- W4287148474 cites W3185381923 @default.
- W4287148474 doi "https://doi.org/10.3390/membranes12080726" @default.
- W4287148474 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35893444" @default.
- W4287148474 hasPublicationYear "2022" @default.
- W4287148474 type Work @default.
- W4287148474 citedByCount "1" @default.
- W4287148474 crossrefType "journal-article" @default.
- W4287148474 hasAuthorship W4287148474A5035642308 @default.
- W4287148474 hasAuthorship W4287148474A5074711669 @default.
- W4287148474 hasBestOaLocation W42871484741 @default.
- W4287148474 hasConcept C119857082 @default.
- W4287148474 hasConcept C127413603 @default.
- W4287148474 hasConcept C150077022 @default.
- W4287148474 hasConcept C153258448 @default.
- W4287148474 hasConcept C154945302 @default.
- W4287148474 hasConcept C41008148 @default.
- W4287148474 hasConcept C47702885 @default.
- W4287148474 hasConcept C50644808 @default.
- W4287148474 hasConceptScore W4287148474C119857082 @default.
- W4287148474 hasConceptScore W4287148474C127413603 @default.
- W4287148474 hasConceptScore W4287148474C150077022 @default.
- W4287148474 hasConceptScore W4287148474C153258448 @default.
- W4287148474 hasConceptScore W4287148474C154945302 @default.
- W4287148474 hasConceptScore W4287148474C41008148 @default.
- W4287148474 hasConceptScore W4287148474C47702885 @default.
- W4287148474 hasConceptScore W4287148474C50644808 @default.
- W4287148474 hasIssue "8" @default.
- W4287148474 hasLocation W42871484741 @default.
- W4287148474 hasLocation W42871484742 @default.
- W4287148474 hasLocation W42871484743 @default.
- W4287148474 hasLocation W42871484744 @default.
- W4287148474 hasOpenAccess W4287148474 @default.
- W4287148474 hasPrimaryLocation W42871484741 @default.
- W4287148474 hasRelatedWork W1183256782 @default.
- W4287148474 hasRelatedWork W1561575136 @default.
- W4287148474 hasRelatedWork W2034903716 @default.
- W4287148474 hasRelatedWork W2043562021 @default.
- W4287148474 hasRelatedWork W2071747709 @default.
- W4287148474 hasRelatedWork W2144589687 @default.
- W4287148474 hasRelatedWork W2899084033 @default.
- W4287148474 hasRelatedWork W2965300777 @default.
- W4287148474 hasRelatedWork W3003367948 @default.
- W4287148474 hasRelatedWork W2182977197 @default.
- W4287148474 hasVolume "12" @default.
- W4287148474 isParatext "false" @default.
- W4287148474 isRetracted "false" @default.
- W4287148474 workType "article" @default.