Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287169483> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4287169483 abstract "The identification of influential observations is an important part of data analysis that can prevent erroneous conclusions drawn from biased estimators. However, in high dimensional data, this identification is challenging. Classical and recently-developed methods often perform poorly when there are multiple influential observations in the same dataset. In particular, current methods can fail when there is masking several influential observations with similar characteristics, or swamping when the influential observations are near the boundary of the space spanned by well-behaved observations. Therefore, we propose an algorithm-based, multi-step, multiple detection procedure to identify influential observations that addresses current limitations. Our three-step algorithm to identify and capture undesirable variability in the data, $asymMIP,$ is based on two complementary statistics, inspired by asymmetric correlations, and built on expectiles. Simulations demonstrate higher detection power than competing methods. Use of the resulting asymptotic distribution leads to detection of influential observations without the need for computationally demanding procedures such as the bootstrap. The application of our method to the Autism Brain Imaging Data Exchange neuroimaging dataset resulted in a more balanced and accurate prediction of brain maturity based on cortical thickness. See our GitHub for a free R package that implements our algorithm: texttt{asymMIP} (url{github.com/AmBarry/hidetify})." @default.
- W4287169483 created "2022-07-25" @default.
- W4287169483 creator A5054222172 @default.
- W4287169483 creator A5056903933 @default.
- W4287169483 creator A5069918313 @default.
- W4287169483 creator A5075344723 @default.
- W4287169483 creator A5088021901 @default.
- W4287169483 date "2021-05-25" @default.
- W4287169483 modified "2023-09-28" @default.
- W4287169483 title "An algorithm-based multiple detection influence measure for high dimensional regression using expectile" @default.
- W4287169483 doi "https://doi.org/10.48550/arxiv.2105.12286" @default.
- W4287169483 hasPublicationYear "2021" @default.
- W4287169483 type Work @default.
- W4287169483 citedByCount "0" @default.
- W4287169483 crossrefType "posted-content" @default.
- W4287169483 hasAuthorship W4287169483A5054222172 @default.
- W4287169483 hasAuthorship W4287169483A5056903933 @default.
- W4287169483 hasAuthorship W4287169483A5069918313 @default.
- W4287169483 hasAuthorship W4287169483A5075344723 @default.
- W4287169483 hasAuthorship W4287169483A5088021901 @default.
- W4287169483 hasBestOaLocation W42871694831 @default.
- W4287169483 hasConcept C105795698 @default.
- W4287169483 hasConcept C11413529 @default.
- W4287169483 hasConcept C116834253 @default.
- W4287169483 hasConcept C119857082 @default.
- W4287169483 hasConcept C124101348 @default.
- W4287169483 hasConcept C153180895 @default.
- W4287169483 hasConcept C154945302 @default.
- W4287169483 hasConcept C185429906 @default.
- W4287169483 hasConcept C2780009758 @default.
- W4287169483 hasConcept C33923547 @default.
- W4287169483 hasConcept C41008148 @default.
- W4287169483 hasConcept C59822182 @default.
- W4287169483 hasConcept C83546350 @default.
- W4287169483 hasConcept C86803240 @default.
- W4287169483 hasConceptScore W4287169483C105795698 @default.
- W4287169483 hasConceptScore W4287169483C11413529 @default.
- W4287169483 hasConceptScore W4287169483C116834253 @default.
- W4287169483 hasConceptScore W4287169483C119857082 @default.
- W4287169483 hasConceptScore W4287169483C124101348 @default.
- W4287169483 hasConceptScore W4287169483C153180895 @default.
- W4287169483 hasConceptScore W4287169483C154945302 @default.
- W4287169483 hasConceptScore W4287169483C185429906 @default.
- W4287169483 hasConceptScore W4287169483C2780009758 @default.
- W4287169483 hasConceptScore W4287169483C33923547 @default.
- W4287169483 hasConceptScore W4287169483C41008148 @default.
- W4287169483 hasConceptScore W4287169483C59822182 @default.
- W4287169483 hasConceptScore W4287169483C83546350 @default.
- W4287169483 hasConceptScore W4287169483C86803240 @default.
- W4287169483 hasLocation W42871694831 @default.
- W4287169483 hasOpenAccess W4287169483 @default.
- W4287169483 hasPrimaryLocation W42871694831 @default.
- W4287169483 hasRelatedWork W2961085424 @default.
- W4287169483 hasRelatedWork W3046775127 @default.
- W4287169483 hasRelatedWork W3170094116 @default.
- W4287169483 hasRelatedWork W3209368546 @default.
- W4287169483 hasRelatedWork W4225307033 @default.
- W4287169483 hasRelatedWork W4285260836 @default.
- W4287169483 hasRelatedWork W4286629047 @default.
- W4287169483 hasRelatedWork W4306321456 @default.
- W4287169483 hasRelatedWork W4306674287 @default.
- W4287169483 hasRelatedWork W4224009465 @default.
- W4287169483 isParatext "false" @default.
- W4287169483 isRetracted "false" @default.
- W4287169483 workType "article" @default.