Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287183500> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4287183500 abstract "Multi-access edge computing (MEC) and network virtualization technologies are important enablers for fifth-generation (5G) networks to deliver diverse applications and services. Services are often provided as fully connected virtual network functions (VNF)s, through service function chaining (SFC). However, the problem of allocating SFC resources at the network edge still faces many challenges related to the way VNFs are placed, chained and scheduled. In this paper, to solve these problems, we propose a game theory-based approach with the objective to reduce service latency in the context of SFC at the network edge. The problem of allocating SFC resources can be divided into two subproblems. 1) The VNF placement and routing subproblem, and 2) the VNF scheduling subproblem. For the former subproblem, we formulate it as a mean field game (MFG) in which VNFs are modeled as entities contending over edge resources with the goal of reducing the resource consumption of MEC nodes and reducing latency for users. We propose a on a reinforcement learning-based technique, where the Ishikawa-Mann learning algorithm (IMLA) is used. For the later subproblem we formulate it as a matching game between the VFNs and an edge resources in order to find the execution order of the VNFs while reducing the latency. To efficiently solve it, we propose a modified version of the many-to-one deferred acceptance algorithm (DAA), called the enhanced multi-step deferred acceptance algorithm (eMSDA). To illustrate the performance of the proposed approaches, we perform extensive simulations. The obtained results show that the proposed approaches outperform the benchmarks other state-of-the-art methods." @default.
- W4287183500 created "2022-07-25" @default.
- W4287183500 creator A5011549008 @default.
- W4287183500 creator A5025108748 @default.
- W4287183500 creator A5071657961 @default.
- W4287183500 creator A5085082908 @default.
- W4287183500 date "2021-05-10" @default.
- W4287183500 modified "2023-09-29" @default.
- W4287183500 title "Service Function Chaining in MEC: A Mean-Field Game and Reinforcement Learning Approach" @default.
- W4287183500 doi "https://doi.org/10.48550/arxiv.2105.04701" @default.
- W4287183500 hasPublicationYear "2021" @default.
- W4287183500 type Work @default.
- W4287183500 citedByCount "0" @default.
- W4287183500 crossrefType "posted-content" @default.
- W4287183500 hasAuthorship W4287183500A5011549008 @default.
- W4287183500 hasAuthorship W4287183500A5025108748 @default.
- W4287183500 hasAuthorship W4287183500A5071657961 @default.
- W4287183500 hasAuthorship W4287183500A5085082908 @default.
- W4287183500 hasBestOaLocation W42871835001 @default.
- W4287183500 hasConcept C120314980 @default.
- W4287183500 hasConcept C126255220 @default.
- W4287183500 hasConcept C154945302 @default.
- W4287183500 hasConcept C15744967 @default.
- W4287183500 hasConcept C162307627 @default.
- W4287183500 hasConcept C206729178 @default.
- W4287183500 hasConcept C2776874963 @default.
- W4287183500 hasConcept C2778456923 @default.
- W4287183500 hasConcept C33923547 @default.
- W4287183500 hasConcept C41008148 @default.
- W4287183500 hasConcept C49020025 @default.
- W4287183500 hasConcept C542102704 @default.
- W4287183500 hasConcept C76155785 @default.
- W4287183500 hasConcept C82876162 @default.
- W4287183500 hasConcept C97541855 @default.
- W4287183500 hasConceptScore W4287183500C120314980 @default.
- W4287183500 hasConceptScore W4287183500C126255220 @default.
- W4287183500 hasConceptScore W4287183500C154945302 @default.
- W4287183500 hasConceptScore W4287183500C15744967 @default.
- W4287183500 hasConceptScore W4287183500C162307627 @default.
- W4287183500 hasConceptScore W4287183500C206729178 @default.
- W4287183500 hasConceptScore W4287183500C2776874963 @default.
- W4287183500 hasConceptScore W4287183500C2778456923 @default.
- W4287183500 hasConceptScore W4287183500C33923547 @default.
- W4287183500 hasConceptScore W4287183500C41008148 @default.
- W4287183500 hasConceptScore W4287183500C49020025 @default.
- W4287183500 hasConceptScore W4287183500C542102704 @default.
- W4287183500 hasConceptScore W4287183500C76155785 @default.
- W4287183500 hasConceptScore W4287183500C82876162 @default.
- W4287183500 hasConceptScore W4287183500C97541855 @default.
- W4287183500 hasLocation W42871835001 @default.
- W4287183500 hasOpenAccess W4287183500 @default.
- W4287183500 hasPrimaryLocation W42871835001 @default.
- W4287183500 hasRelatedWork W1882733036 @default.
- W4287183500 hasRelatedWork W2039968861 @default.
- W4287183500 hasRelatedWork W2160425906 @default.
- W4287183500 hasRelatedWork W2388420286 @default.
- W4287183500 hasRelatedWork W2765557566 @default.
- W4287183500 hasRelatedWork W2789499357 @default.
- W4287183500 hasRelatedWork W2971330993 @default.
- W4287183500 hasRelatedWork W3037422413 @default.
- W4287183500 hasRelatedWork W3046945740 @default.
- W4287183500 hasRelatedWork W4200541908 @default.
- W4287183500 isParatext "false" @default.
- W4287183500 isRetracted "false" @default.
- W4287183500 workType "article" @default.