Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287225920> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4287225920 endingPage "356" @default.
- W4287225920 startingPage "339" @default.
- W4287225920 abstract "X-ray has a huge popularity around the world. This is due to its low cost and easy to access. Most of lung diseases are diagnosed using Chest X-ray (CXR). So, developing computer aided detection (CAD) provided with automatic lung segmentation can improve the efficiency of the detection and support the physicians to make a reliable decision at early stages. But when the input image has image artifacts, then any lung segmentation model will introduce suboptimal lung segmentation results. In this paper, a new approach is proposed to make the lung segmentation model robust and boost the basic models’ performance. This is done through two stages: image enhancement and lung segmentation. The first stage aims to enhance the image quality by using the combination of Variational Autoencoder (VAE) and U-Net. The features of VAE and U-Net are concatenated to decode the enhanced output CXR image. The second stage is segmenting the lung using ResUNet++, which can perform well with a few number of images. Moreover, it combines the advantages of residual blocks, squeeze and excitation blocks, Atrous Spatial Pyramidal Pooling (ASPP), and attention blocks. The proposed method is trained on JSRT dataset. The proposed approach achieved Dice score of 0.9848, 0.99 and the Jaccard score of 0.9783, 0.984 on test data of NLM-MC and JSRT datasets, respectively, which outperforms results in other state of the art models." @default.
- W4287225920 created "2022-07-25" @default.
- W4287225920 creator A5002304472 @default.
- W4287225920 creator A5045163734 @default.
- W4287225920 creator A5054327907 @default.
- W4287225920 creator A5060283705 @default.
- W4287225920 creator A5067513150 @default.
- W4287225920 creator A5080442213 @default.
- W4287225920 date "2022-01-01" @default.
- W4287225920 modified "2023-09-30" @default.
- W4287225920 title "Lung Segmentation Using ResUnet++ Powered by Variational Auto Encoder-Based Enhancement in Chest X-ray Images" @default.
- W4287225920 cites W2038952578 @default.
- W4287225920 cites W2144133758 @default.
- W4287225920 cites W2794103425 @default.
- W4287225920 cites W2801827608 @default.
- W4287225920 cites W2885112059 @default.
- W4287225920 cites W2952855260 @default.
- W4287225920 cites W2963881378 @default.
- W4287225920 cites W3000348766 @default.
- W4287225920 cites W3015390407 @default.
- W4287225920 cites W3018407595 @default.
- W4287225920 cites W3040676006 @default.
- W4287225920 cites W3086675810 @default.
- W4287225920 cites W3119260780 @default.
- W4287225920 cites W4200175037 @default.
- W4287225920 cites W4233810166 @default.
- W4287225920 cites W4288022876 @default.
- W4287225920 doi "https://doi.org/10.1007/978-3-031-12053-4_26" @default.
- W4287225920 hasPublicationYear "2022" @default.
- W4287225920 type Work @default.
- W4287225920 citedByCount "1" @default.
- W4287225920 countsByYear W42872259202023 @default.
- W4287225920 crossrefType "book-chapter" @default.
- W4287225920 hasAuthorship W4287225920A5002304472 @default.
- W4287225920 hasAuthorship W4287225920A5045163734 @default.
- W4287225920 hasAuthorship W4287225920A5054327907 @default.
- W4287225920 hasAuthorship W4287225920A5060283705 @default.
- W4287225920 hasAuthorship W4287225920A5067513150 @default.
- W4287225920 hasAuthorship W4287225920A5080442213 @default.
- W4287225920 hasConcept C101738243 @default.
- W4287225920 hasConcept C108583219 @default.
- W4287225920 hasConcept C111919701 @default.
- W4287225920 hasConcept C115961682 @default.
- W4287225920 hasConcept C118505674 @default.
- W4287225920 hasConcept C124504099 @default.
- W4287225920 hasConcept C153180895 @default.
- W4287225920 hasConcept C154945302 @default.
- W4287225920 hasConcept C163892561 @default.
- W4287225920 hasConcept C203519979 @default.
- W4287225920 hasConcept C31972630 @default.
- W4287225920 hasConcept C41008148 @default.
- W4287225920 hasConcept C55020928 @default.
- W4287225920 hasConcept C70437156 @default.
- W4287225920 hasConcept C89600930 @default.
- W4287225920 hasConceptScore W4287225920C101738243 @default.
- W4287225920 hasConceptScore W4287225920C108583219 @default.
- W4287225920 hasConceptScore W4287225920C111919701 @default.
- W4287225920 hasConceptScore W4287225920C115961682 @default.
- W4287225920 hasConceptScore W4287225920C118505674 @default.
- W4287225920 hasConceptScore W4287225920C124504099 @default.
- W4287225920 hasConceptScore W4287225920C153180895 @default.
- W4287225920 hasConceptScore W4287225920C154945302 @default.
- W4287225920 hasConceptScore W4287225920C163892561 @default.
- W4287225920 hasConceptScore W4287225920C203519979 @default.
- W4287225920 hasConceptScore W4287225920C31972630 @default.
- W4287225920 hasConceptScore W4287225920C41008148 @default.
- W4287225920 hasConceptScore W4287225920C55020928 @default.
- W4287225920 hasConceptScore W4287225920C70437156 @default.
- W4287225920 hasConceptScore W4287225920C89600930 @default.
- W4287225920 hasLocation W42872259201 @default.
- W4287225920 hasOpenAccess W4287225920 @default.
- W4287225920 hasPrimaryLocation W42872259201 @default.
- W4287225920 hasRelatedWork W2005437358 @default.
- W4287225920 hasRelatedWork W2292254049 @default.
- W4287225920 hasRelatedWork W2441762250 @default.
- W4287225920 hasRelatedWork W2517104666 @default.
- W4287225920 hasRelatedWork W2897995864 @default.
- W4287225920 hasRelatedWork W2998168123 @default.
- W4287225920 hasRelatedWork W3093926553 @default.
- W4287225920 hasRelatedWork W4287631720 @default.
- W4287225920 hasRelatedWork W4287995534 @default.
- W4287225920 hasRelatedWork W4315491877 @default.
- W4287225920 isParatext "false" @default.
- W4287225920 isRetracted "false" @default.
- W4287225920 workType "book-chapter" @default.