Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287247637> ?p ?o ?g. }
Showing items 1 to 51 of
51
with 100 items per page.
- W4287247637 abstract "In a graph G, the cardinality of the smallest ordered set of vertices that distinguishes every element of V (G) (resp. E(G)) is called the vertex (resp. edge) metric dimension of G. In [16] it was shown that both vertex and edge metric dimension of a unicyclic graph G always take values from just two explicitly given consecutive integers that are derived from the structure of the graph. A natural problem that arises is to determine under what conditions these dimensions take each of the two possible values. In this paper for each of these two metric dimensions we characterize three graph configurations and prove that it takes the greater of the two possible values if and only if the graph contains at least one of these configurations. One of these configurations is the same for both dimensions, while the other two are specific for each of them. This enables us to establish the exact value of the metric dimensions for a unicyclic graph and also to characterize when each of these two dimensions is greater than the other one." @default.
- W4287247637 created "2022-07-25" @default.
- W4287247637 creator A5083674096 @default.
- W4287247637 creator A5086320189 @default.
- W4287247637 date "2021-04-01" @default.
- W4287247637 modified "2023-09-26" @default.
- W4287247637 title "Vertex and edge metric dimensions of unicyclic graphs" @default.
- W4287247637 doi "https://doi.org/10.48550/arxiv.2104.00577" @default.
- W4287247637 hasPublicationYear "2021" @default.
- W4287247637 type Work @default.
- W4287247637 citedByCount "0" @default.
- W4287247637 crossrefType "posted-content" @default.
- W4287247637 hasAuthorship W4287247637A5083674096 @default.
- W4287247637 hasAuthorship W4287247637A5086320189 @default.
- W4287247637 hasBestOaLocation W42872476371 @default.
- W4287247637 hasConcept C102192266 @default.
- W4287247637 hasConcept C114614502 @default.
- W4287247637 hasConcept C118615104 @default.
- W4287247637 hasConcept C132525143 @default.
- W4287247637 hasConcept C149530733 @default.
- W4287247637 hasConcept C168291704 @default.
- W4287247637 hasConcept C203776342 @default.
- W4287247637 hasConcept C33923547 @default.
- W4287247637 hasConcept C60933471 @default.
- W4287247637 hasConcept C80899671 @default.
- W4287247637 hasConceptScore W4287247637C102192266 @default.
- W4287247637 hasConceptScore W4287247637C114614502 @default.
- W4287247637 hasConceptScore W4287247637C118615104 @default.
- W4287247637 hasConceptScore W4287247637C132525143 @default.
- W4287247637 hasConceptScore W4287247637C149530733 @default.
- W4287247637 hasConceptScore W4287247637C168291704 @default.
- W4287247637 hasConceptScore W4287247637C203776342 @default.
- W4287247637 hasConceptScore W4287247637C33923547 @default.
- W4287247637 hasConceptScore W4287247637C60933471 @default.
- W4287247637 hasConceptScore W4287247637C80899671 @default.
- W4287247637 hasLocation W42872476371 @default.
- W4287247637 hasOpenAccess W4287247637 @default.
- W4287247637 hasPrimaryLocation W42872476371 @default.
- W4287247637 hasRelatedWork W1603070565 @default.
- W4287247637 hasRelatedWork W1858680408 @default.
- W4287247637 hasRelatedWork W1963961477 @default.
- W4287247637 hasRelatedWork W2045919248 @default.
- W4287247637 hasRelatedWork W2049807202 @default.
- W4287247637 hasRelatedWork W2078116550 @default.
- W4287247637 hasRelatedWork W2368524975 @default.
- W4287247637 hasRelatedWork W2374778222 @default.
- W4287247637 hasRelatedWork W4205216486 @default.
- W4287247637 hasRelatedWork W4287253423 @default.
- W4287247637 isParatext "false" @default.
- W4287247637 isRetracted "false" @default.
- W4287247637 workType "article" @default.