Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287256578> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W4287256578 abstract "Let $G$ be a split connected reductive group over $mathbb{Z}$. Let $F$ be a non-archimedean local field. With $K_m: = Ker(G(mathfrak{O}_F) rightarrow G(mathfrak{O}_F/mathfrak{p}_F^m))$, Kazhdan proved that for a field $F'$sufficiently close local field to $F$, the Hecke algebras $mathcal{H}(G(F),K_m)$ and $mathcal{H}(G(F'),K_m')$ are isomorphic, where $K_m'$ denotes the corresponding object over $F'$. In this article, we generalize this result to general connected reductive groups." @default.
- W4287256578 created "2022-07-25" @default.
- W4287256578 creator A5026986649 @default.
- W4287256578 date "2021-03-23" @default.
- W4287256578 modified "2023-09-29" @default.
- W4287256578 title "A Hecke algebra isomorphism over close local fields" @default.
- W4287256578 hasPublicationYear "2021" @default.
- W4287256578 type Work @default.
- W4287256578 citedByCount "0" @default.
- W4287256578 crossrefType "posted-content" @default.
- W4287256578 hasAuthorship W4287256578A5026986649 @default.
- W4287256578 hasBestOaLocation W42872565781 @default.
- W4287256578 hasConcept C114614502 @default.
- W4287256578 hasConcept C115624301 @default.
- W4287256578 hasConcept C121332964 @default.
- W4287256578 hasConcept C136119220 @default.
- W4287256578 hasConcept C179415260 @default.
- W4287256578 hasConcept C185592680 @default.
- W4287256578 hasConcept C202444582 @default.
- W4287256578 hasConcept C203436722 @default.
- W4287256578 hasConcept C2524010 @default.
- W4287256578 hasConcept C2781280181 @default.
- W4287256578 hasConcept C2781311116 @default.
- W4287256578 hasConcept C33923547 @default.
- W4287256578 hasConcept C62520636 @default.
- W4287256578 hasConcept C8010536 @default.
- W4287256578 hasConcept C81651864 @default.
- W4287256578 hasConcept C84583765 @default.
- W4287256578 hasConcept C9652623 @default.
- W4287256578 hasConceptScore W4287256578C114614502 @default.
- W4287256578 hasConceptScore W4287256578C115624301 @default.
- W4287256578 hasConceptScore W4287256578C121332964 @default.
- W4287256578 hasConceptScore W4287256578C136119220 @default.
- W4287256578 hasConceptScore W4287256578C179415260 @default.
- W4287256578 hasConceptScore W4287256578C185592680 @default.
- W4287256578 hasConceptScore W4287256578C202444582 @default.
- W4287256578 hasConceptScore W4287256578C203436722 @default.
- W4287256578 hasConceptScore W4287256578C2524010 @default.
- W4287256578 hasConceptScore W4287256578C2781280181 @default.
- W4287256578 hasConceptScore W4287256578C2781311116 @default.
- W4287256578 hasConceptScore W4287256578C33923547 @default.
- W4287256578 hasConceptScore W4287256578C62520636 @default.
- W4287256578 hasConceptScore W4287256578C8010536 @default.
- W4287256578 hasConceptScore W4287256578C81651864 @default.
- W4287256578 hasConceptScore W4287256578C84583765 @default.
- W4287256578 hasConceptScore W4287256578C9652623 @default.
- W4287256578 hasLocation W42872565781 @default.
- W4287256578 hasOpenAccess W4287256578 @default.
- W4287256578 hasPrimaryLocation W42872565781 @default.
- W4287256578 hasRelatedWork W12346489 @default.
- W4287256578 hasRelatedWork W13275624 @default.
- W4287256578 hasRelatedWork W20592483 @default.
- W4287256578 hasRelatedWork W23388853 @default.
- W4287256578 hasRelatedWork W23563354 @default.
- W4287256578 hasRelatedWork W29314 @default.
- W4287256578 hasRelatedWork W4050628 @default.
- W4287256578 hasRelatedWork W5880527 @default.
- W4287256578 hasRelatedWork W6846299 @default.
- W4287256578 hasRelatedWork W19151763 @default.
- W4287256578 isParatext "false" @default.
- W4287256578 isRetracted "false" @default.
- W4287256578 workType "article" @default.