Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287269571> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4287269571 abstract "Inferences about hypotheses are ubiquitous in the cognitive sciences. Bayes factors provide one general way to compare different hypotheses by their compatibility with the observed data. Those quantifications can then also be used to choose between hypotheses. While Bayes factors provide an immediate approach to hypothesis testing, they are highly sensitive to details of the data/model assumptions. Moreover it's not clear how straightforwardly this approach can be implemented in practice, and in particular how sensitive it is to the details of the computational implementation. Here, we investigate these questions for Bayes factor analyses in the cognitive sciences. We explain the statistics underlying Bayes factors as a tool for Bayesian inferences and discuss that utility functions are needed for principled decisions on hypotheses. Next, we study how Bayes factors misbehave under different conditions. This includes a study of errors in the estimation of Bayes factors. Importantly, it is unknown whether Bayes factor estimates based on bridge sampling are unbiased for complex analyses. We are the first to use simulation-based calibration as a tool to test the accuracy of Bayes factor estimates. Moreover, we study how stable Bayes factors are against different MCMC draws. We moreover study how Bayes factors depend on variation in the data. We also look at variability of decisions based on Bayes factors and how to optimize decisions using a utility function. We outline a Bayes factor workflow that researchers can use to study whether Bayes factors are robust for their individual analysis, and we illustrate this workflow using an example from the cognitive sciences. We hope that this study will provide a workflow to test the strengths and limitations of Bayes factors as a way to quantify evidence in support of scientific hypotheses. Reproducible code is available from https://osf.io/y354c/." @default.
- W4287269571 created "2022-07-25" @default.
- W4287269571 creator A5002073624 @default.
- W4287269571 creator A5019071696 @default.
- W4287269571 creator A5067693591 @default.
- W4287269571 creator A5070212168 @default.
- W4287269571 creator A5082373943 @default.
- W4287269571 date "2021-03-15" @default.
- W4287269571 modified "2023-09-27" @default.
- W4287269571 title "Workflow Techniques for the Robust Use of Bayes Factors" @default.
- W4287269571 doi "https://doi.org/10.48550/arxiv.2103.08744" @default.
- W4287269571 hasPublicationYear "2021" @default.
- W4287269571 type Work @default.
- W4287269571 citedByCount "0" @default.
- W4287269571 crossrefType "posted-content" @default.
- W4287269571 hasAuthorship W4287269571A5002073624 @default.
- W4287269571 hasAuthorship W4287269571A5019071696 @default.
- W4287269571 hasAuthorship W4287269571A5067693591 @default.
- W4287269571 hasAuthorship W4287269571A5070212168 @default.
- W4287269571 hasAuthorship W4287269571A5082373943 @default.
- W4287269571 hasBestOaLocation W42872695711 @default.
- W4287269571 hasConcept C101112237 @default.
- W4287269571 hasConcept C105795698 @default.
- W4287269571 hasConcept C107673813 @default.
- W4287269571 hasConcept C119857082 @default.
- W4287269571 hasConcept C142291917 @default.
- W4287269571 hasConcept C154945302 @default.
- W4287269571 hasConcept C160234255 @default.
- W4287269571 hasConcept C177212765 @default.
- W4287269571 hasConcept C207201462 @default.
- W4287269571 hasConcept C33923547 @default.
- W4287269571 hasConcept C41008148 @default.
- W4287269571 hasConcept C68022304 @default.
- W4287269571 hasConcept C77088390 @default.
- W4287269571 hasConcept C87007009 @default.
- W4287269571 hasConcept C99087107 @default.
- W4287269571 hasConceptScore W4287269571C101112237 @default.
- W4287269571 hasConceptScore W4287269571C105795698 @default.
- W4287269571 hasConceptScore W4287269571C107673813 @default.
- W4287269571 hasConceptScore W4287269571C119857082 @default.
- W4287269571 hasConceptScore W4287269571C142291917 @default.
- W4287269571 hasConceptScore W4287269571C154945302 @default.
- W4287269571 hasConceptScore W4287269571C160234255 @default.
- W4287269571 hasConceptScore W4287269571C177212765 @default.
- W4287269571 hasConceptScore W4287269571C207201462 @default.
- W4287269571 hasConceptScore W4287269571C33923547 @default.
- W4287269571 hasConceptScore W4287269571C41008148 @default.
- W4287269571 hasConceptScore W4287269571C68022304 @default.
- W4287269571 hasConceptScore W4287269571C77088390 @default.
- W4287269571 hasConceptScore W4287269571C87007009 @default.
- W4287269571 hasConceptScore W4287269571C99087107 @default.
- W4287269571 hasLocation W42872695711 @default.
- W4287269571 hasOpenAccess W4287269571 @default.
- W4287269571 hasPrimaryLocation W42872695711 @default.
- W4287269571 hasRelatedWork W2030346622 @default.
- W4287269571 hasRelatedWork W2077964517 @default.
- W4287269571 hasRelatedWork W2080772702 @default.
- W4287269571 hasRelatedWork W2183289514 @default.
- W4287269571 hasRelatedWork W2210566709 @default.
- W4287269571 hasRelatedWork W2334956860 @default.
- W4287269571 hasRelatedWork W2472385188 @default.
- W4287269571 hasRelatedWork W2493846208 @default.
- W4287269571 hasRelatedWork W3034774545 @default.
- W4287269571 hasRelatedWork W4297513322 @default.
- W4287269571 isParatext "false" @default.
- W4287269571 isRetracted "false" @default.
- W4287269571 workType "article" @default.